Skip to main content
Erschienen in: International Journal of Speech Technology 1/2019

30.11.2018

Continuous Tamil Speech Recognition technique under non stationary noisy environments

verfasst von: M. Kalamani, M. Krishnamoorthi, R. S. Valarmathi

Erschienen in: International Journal of Speech Technology | Ausgabe 1/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In the last few years, the need for Continuous Speech Recognition system in Tamil language has been increased widely. In this research work, efficient Continuous Tamil Speech Recognition (CTSR) technique is proposed under non stationary noisy environments. This research work consists of two stages such as speech enhancement and modelling phase. In this, the modified Modulation Magnitude Estimation based Spectral Subtraction with Chi-Square Distribution based Noise Estimation (SS–NE) algorithm is proposed to enhance the noisy Tamil speech signal under various non-stationary noise environments. In order to extract the speech segments from the continuous speech, further the enhanced speech signal is segmented through the combination of short-time signal energy and spectral centroid features of the signal. In this work, 26 mel frequency cepstral coefficients per frame are found as optimal values and they are considered as acoustic feature vectors for each frame. In this research work, the Fuzzy C-Means (FCM) clustering is used in order to cluster the extracted feature vectors into discrete symbols. From the evaluation results, it is found that the optimal number of clusters ‘C’ as 5. Finally, Tamil speech from various speakers is recognized using Expectation Maximization Gaussian Mixture Model (EM-GMM) with 16 component densities under continuous measurements of labelled features from FCM clustering techniques in order to reduce the word error rate. From the simulated results, it is observed that the proposed FCM with EM-GMM model for CTSR improves the recognition accuracy from 1.2 to 4.4% when compared to the existing algorithms under different noisy environments by reducing the WER from 1.6 to 5.47%.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Al-Alaoui, M. A., Al-Kanj, L., Azar, J., & Yaacoub, E. (2008). Speech recognition using artificial neural networks and hidden Markov models. IEEE Multidisciplinary Engineering Education Magazine, 3(3), 77–86. Al-Alaoui, M. A., Al-Kanj, L., Azar, J., & Yaacoub, E. (2008). Speech recognition using artificial neural networks and hidden Markov models. IEEE Multidisciplinary Engineering Education Magazine, 3(3), 77–86.
Zurück zum Zitat Atlas, L., Li, Q., & Thompson, J. (2004). Homomorphic modulation spectra. In Proceedings of the IEEE international conference on acoustics, speech, and signal processing, Vol. 2, pp. ii761–ii764. Atlas, L., Li, Q., & Thompson, J. (2004). Homomorphic modulation spectra. In Proceedings of the IEEE international conference on acoustics, speech, and signal processing, Vol. 2, pp. ii761–ii764.
Zurück zum Zitat Benesty, J., & Huang, Y. (2003). Adaptive signal processing: Applications to real-world problems. Berlin: Springer.MATHCrossRef Benesty, J., & Huang, Y. (2003). Adaptive signal processing: Applications to real-world problems. Berlin: Springer.MATHCrossRef
Zurück zum Zitat Boll, S. (1979). Suppression of acoustic noise in speech using spectral subtraction. IEEE Transactions on Acoustics, Speech and Signal Processing, 27(2), 113–120.CrossRef Boll, S. (1979). Suppression of acoustic noise in speech using spectral subtraction. IEEE Transactions on Acoustics, Speech and Signal Processing, 27(2), 113–120.CrossRef
Zurück zum Zitat Cappé, O. (1994). Elimination of the musical noise phenomenon with the Ephraim and Malah noise suppressor. IEEE Transactions on Speech and Audio Processing, 2(2), 345–349.CrossRef Cappé, O. (1994). Elimination of the musical noise phenomenon with the Ephraim and Malah noise suppressor. IEEE Transactions on Speech and Audio Processing, 2(2), 345–349.CrossRef
Zurück zum Zitat Chattopadhyay, S., Pratihar, D. K., & Sarkar, S. C. D. (2011). A comparative study of fuzzy C-means algorithm and entropy-based fuzzy clustering algorithms. Computing and Informatics, 30(4), 701–720.MATH Chattopadhyay, S., Pratihar, D. K., & Sarkar, S. C. D. (2011). A comparative study of fuzzy C-means algorithm and entropy-based fuzzy clustering algorithms. Computing and Informatics, 30(4), 701–720.MATH
Zurück zum Zitat Chi, H. F., Gao, S. X., Soli, S. D., & Alwan, A. (2003). Band-limited feedback cancellation with a modified filtered-X LMS algorithm for hearing aids. Speech Communication, 39(1), 147–161.MATHCrossRef Chi, H. F., Gao, S. X., Soli, S. D., & Alwan, A. (2003). Band-limited feedback cancellation with a modified filtered-X LMS algorithm for hearing aids. Speech Communication, 39(1), 147–161.MATHCrossRef
Zurück zum Zitat Cohen, I. (2003). Noise spectrum estimation in adverse environments: Improved minima controlled recursive averaging. IEEE Transactions on Speech Audio Processing, 11(5), 466–475.CrossRef Cohen, I. (2003). Noise spectrum estimation in adverse environments: Improved minima controlled recursive averaging. IEEE Transactions on Speech Audio Processing, 11(5), 466–475.CrossRef
Zurück zum Zitat Cohen, I. (2004). Speech enhancement using a non-causal a priori SNR estimator. IEEE Signal Processing Letters, 11(9), 725–728.CrossRef Cohen, I. (2004). Speech enhancement using a non-causal a priori SNR estimator. IEEE Signal Processing Letters, 11(9), 725–728.CrossRef
Zurück zum Zitat Cohen, I. (2005). Speech enhancement using super Gaussian speech models and non causal a priori SNR estimation. Speech Communication, 47(3), 336–350.MathSciNetCrossRef Cohen, I. (2005). Speech enhancement using super Gaussian speech models and non causal a priori SNR estimation. Speech Communication, 47(3), 336–350.MathSciNetCrossRef
Zurück zum Zitat Cohen, I., & Berdugo, B. (2002). Noise Estimation by minima controlled recursive averaging for robust speech enhancement. IEEE Signal Processing Letters, 9(1), 12–15.CrossRef Cohen, I., & Berdugo, B. (2002). Noise Estimation by minima controlled recursive averaging for robust speech enhancement. IEEE Signal Processing Letters, 9(1), 12–15.CrossRef
Zurück zum Zitat Cornelis, B., Moonen, M., & Wouters, J. (2011). Performance analysis of multichannel Wiener Filter-based noise reduction in hearing aids under second order statistics estimation errors. IEEE Transactions on Audio, Speech and Language Processing, 19(5), 1368–1381.CrossRef Cornelis, B., Moonen, M., & Wouters, J. (2011). Performance analysis of multichannel Wiener Filter-based noise reduction in hearing aids under second order statistics estimation errors. IEEE Transactions on Audio, Speech and Language Processing, 19(5), 1368–1381.CrossRef
Zurück zum Zitat Davis, S., & Mermelstein, P. (1980). Comparison of parametric representations for monosyllabic word recognition in continuously spoken sentences. IEEE Transactions on Acoustics, Speech and Signal Processing, 28(4), 357–366.CrossRef Davis, S., & Mermelstein, P. (1980). Comparison of parametric representations for monosyllabic word recognition in continuously spoken sentences. IEEE Transactions on Acoustics, Speech and Signal Processing, 28(4), 357–366.CrossRef
Zurück zum Zitat Ephraim, Y., & Malah, D. (1984). Speech enhancement using a minimum mean square error short-time spectral amplitude estimator. IEEE Transactions on Acoustics, Speech and Signal Processing, 32(6), 1109–1121.CrossRef Ephraim, Y., & Malah, D. (1984). Speech enhancement using a minimum mean square error short-time spectral amplitude estimator. IEEE Transactions on Acoustics, Speech and Signal Processing, 32(6), 1109–1121.CrossRef
Zurück zum Zitat Erkelens, J., Jensen, J., & Heusdens, R. (2007). A data driven approach to optimized spectral speech enhancement methods for various error criteria. Speech Communication, 49(7), 530–541.CrossRef Erkelens, J., Jensen, J., & Heusdens, R. (2007). A data driven approach to optimized spectral speech enhancement methods for various error criteria. Speech Communication, 49(7), 530–541.CrossRef
Zurück zum Zitat Erkelens, J. S., & Heusdens, R. (2008). Tracking of non-stationary noise based on data-driven recursive noise power estimation. IEEE Transactions on Audio, Speech, and Language Processing, 16(6), 1112–1123.CrossRef Erkelens, J. S., & Heusdens, R. (2008). Tracking of non-stationary noise based on data-driven recursive noise power estimation. IEEE Transactions on Audio, Speech, and Language Processing, 16(6), 1112–1123.CrossRef
Zurück zum Zitat Gerkmann, T., & Hendriks, R. C. (2011). Noise power estimation based on the probability of speech presence. In Proceedings of the IEEE workshop on applications of signal processing to audio and acoustics, pp. 145–148. Gerkmann, T., & Hendriks, R. C. (2011). Noise power estimation based on the probability of speech presence. In Proceedings of the IEEE workshop on applications of signal processing to audio and acoustics, pp. 145–148.
Zurück zum Zitat Ghanbari, Y., Karami, M., & Amelifard, B. (2004). Improved Multiband Spectral subtraction method for speech enhancement. In Proceedings of the sixth IASTED international conference on signal and image processing, pp. 225–230. Ghanbari, Y., Karami, M., & Amelifard, B. (2004). Improved Multiband Spectral subtraction method for speech enhancement. In Proceedings of the sixth IASTED international conference on signal and image processing, pp. 225–230.
Zurück zum Zitat Haykin, S., & Widrow, B. (2003). Least-mean-square adaptive filters. New York: Wiley.CrossRef Haykin, S., & Widrow, B. (2003). Least-mean-square adaptive filters. New York: Wiley.CrossRef
Zurück zum Zitat Hellgren, J. (2002). Analysis of feedback cancellation in hearing aids with filtered-X LMS and the direct method of closed loop identification. IEEE Transactions on Speech and Audio Processing, 10(2), 119–131.CrossRef Hellgren, J. (2002). Analysis of feedback cancellation in hearing aids with filtered-X LMS and the direct method of closed loop identification. IEEE Transactions on Speech and Audio Processing, 10(2), 119–131.CrossRef
Zurück zum Zitat Hermansky, H. (1990). Perceptual linear predictive (PLP) analysis for speech. Journal of Acoustic Society of America, 87(4), 1738–1752.CrossRef Hermansky, H. (1990). Perceptual linear predictive (PLP) analysis for speech. Journal of Acoustic Society of America, 87(4), 1738–1752.CrossRef
Zurück zum Zitat Hermansky, H., & Morgan, N. (1994). RASTA processing of speech. IEEE Transactions on Speech and Audio Processing, 2(4), 578–589.CrossRef Hermansky, H., & Morgan, N. (1994). RASTA processing of speech. IEEE Transactions on Speech and Audio Processing, 2(4), 578–589.CrossRef
Zurück zum Zitat Hossan, M. A., Memon, S., & Gregory, M. A. (2010). A novel approach for MFCC feature extraction. In Proceedings of the IEEE fourth international conference on signal processing and communication systems, pp. 1–5. Hossan, M. A., Memon, S., & Gregory, M. A. (2010). A novel approach for MFCC feature extraction. In Proceedings of the IEEE fourth international conference on signal processing and communication systems, pp. 1–5.
Zurück zum Zitat Huang, H. C., & Lee, J. (2012). A new variable step-size NLMS algorithm and its performance analysis. IEEE Transactions on Signal Processing, 60(4), 2055–2060.MathSciNetMATHCrossRef Huang, H. C., & Lee, J. (2012). A new variable step-size NLMS algorithm and its performance analysis. IEEE Transactions on Signal Processing, 60(4), 2055–2060.MathSciNetMATHCrossRef
Zurück zum Zitat Kalamani, M., Valarmathy, S., & Krishnamoorthi, M. (2014a). Speech enhancement using modified magnitude estimation- based spectral subtraction algorithm. Arabian Journal for Sciences and Engineering, 39(32), 8965–8978.CrossRef Kalamani, M., Valarmathy, S., & Krishnamoorthi, M. (2014a). Speech enhancement using modified magnitude estimation- based spectral subtraction algorithm. Arabian Journal for Sciences and Engineering, 39(32), 8965–8978.CrossRef
Zurück zum Zitat Kalamani, M., Valarmathy, S., & Krishnamoorthi, M. (2014b). Adaptive noise reduction, algorithm for speech enhancement. World Academy of Science, Engineering and Technology - International Journal of Computer, Information, Systems and Control Engineering, 8(6), 987–994. Kalamani, M., Valarmathy, S., & Krishnamoorthi, M. (2014b). Adaptive noise reduction, algorithm for speech enhancement. World Academy of Science, Engineering and Technology - International Journal of Computer, Information, Systems and Control Engineering, 8(6), 987–994.
Zurück zum Zitat Kalamani, M., Valarmathy, S., & Krishnamoorthi, M. (2014c). Hybrid modeling algorithm for Continuous Tamil Speech Recognition. World Academy of Science, Engineering and Technology - International Journal of Computer, Information, Systems and Control Engineering, 8(12), 1927–1934. Kalamani, M., Valarmathy, S., & Krishnamoorthi, M. (2014c). Hybrid modeling algorithm for Continuous Tamil Speech Recognition. World Academy of Science, Engineering and Technology - International Journal of Computer, Information, Systems and Control Engineering, 8(12), 1927–1934.
Zurück zum Zitat Kalamani, M., Valarmathy, S., & Krishnamoorthi, M. (2015). Noise tracking algorithm for speech enhancement. Applied Mathematics and Information Sciences, 9(2), 691–698. Kalamani, M., Valarmathy, S., & Krishnamoorthi, M. (2015). Noise tracking algorithm for speech enhancement. Applied Mathematics and Information Sciences, 9(2), 691–698.
Zurück zum Zitat Kamath, S., & Loizou, P. (2002). A multi-band spectral subtraction method for enhancing speech corrupted by colored noise. In Proceedings of the IEEE international conference on acoustics, speech, and signal processing, pp. 4164–4167. Kamath, S., & Loizou, P. (2002). A multi-band spectral subtraction method for enhancing speech corrupted by colored noise. In Proceedings of the IEEE international conference on acoustics, speech, and signal processing, pp. 4164–4167.
Zurück zum Zitat Kesarkar, M. P. (2003). Feature extraction for speech recognition. Technical Credit Seminar Report, Electronic Systems Group, IIT Bombay. Kesarkar, M. P. (2003). Feature extraction for speech recognition. Technical Credit Seminar Report, Electronic Systems Group, IIT Bombay.
Zurück zum Zitat Li, X. G., Yao, M. F., & Huang, W. T. (2011). Speech recognition based on k-means clustering and neural network ensembles. In Proceedings of the IEEE seventh international conference on natural computation, Vol. 2, pp. 614–617. Li, X. G., Yao, M. F., & Huang, W. T. (2011). Speech recognition based on k-means clustering and neural network ensembles. In Proceedings of the IEEE seventh international conference on natural computation, Vol. 2, pp. 614–617.
Zurück zum Zitat Loizou, P. C. (2005). Speech enhancement based on perceptually motivated Bayesian estimators of the magnitude spectrum. IEEE Transactions on Speech and Audio Processing, 13(5), 857–869.CrossRef Loizou, P. C. (2005). Speech enhancement based on perceptually motivated Bayesian estimators of the magnitude spectrum. IEEE Transactions on Speech and Audio Processing, 13(5), 857–869.CrossRef
Zurück zum Zitat Martin, R. (2001). Noise power spectral density estimation based on optimal smoothing and minimum statistics. IEEE Transactions on Speech Audio Processing, 9(5), 504–512.CrossRef Martin, R. (2001). Noise power spectral density estimation based on optimal smoothing and minimum statistics. IEEE Transactions on Speech Audio Processing, 9(5), 504–512.CrossRef
Zurück zum Zitat Martin, R. (2005). Speech enhancement based on minimum mean-square error estimation and super-Gaussian priors. IEEE Transactions on Speech and Audio Processing, 3(5), 845–856.CrossRef Martin, R. (2005). Speech enhancement based on minimum mean-square error estimation and super-Gaussian priors. IEEE Transactions on Speech and Audio Processing, 3(5), 845–856.CrossRef
Zurück zum Zitat Mohammed, J. R., & Shafi, M. S. (2012). An efficient adaptive noise cancellation scheme using ALE and NLMS filters. International Journal of Electrical and Computer Engineering, 2(3), 325–332. Mohammed, J. R., & Shafi, M. S. (2012). An efficient adaptive noise cancellation scheme using ALE and NLMS filters. International Journal of Electrical and Computer Engineering, 2(3), 325–332.
Zurück zum Zitat Paliwal, K., Schwerin, B., & Wójcicki, K. (2012). Speech enhancement using a minimum mean square error short time spectral modulation magnitude estimator. Speech Communication, 54(2), 282–305.CrossRef Paliwal, K., Schwerin, B., & Wójcicki, K. (2012). Speech enhancement using a minimum mean square error short time spectral modulation magnitude estimator. Speech Communication, 54(2), 282–305.CrossRef
Zurück zum Zitat Paliwal, K., Wójcicki, K., & Schwerin, B. (2010). Single-channel speech enhancement using spectral subtraction in the short-time modulation domain. Speech Communication, 52(5), 450–475.CrossRef Paliwal, K., Wójcicki, K., & Schwerin, B. (2010). Single-channel speech enhancement using spectral subtraction in the short-time modulation domain. Speech Communication, 52(5), 450–475.CrossRef
Zurück zum Zitat Porter, J., & Boll, S. (1984). Optimal estimators for spectral restoration of noisy speech. In Proceedings of the IEEE international conference on acoustics, speech, and signal processing, Vol. 9, pp. 53–56. Porter, J., & Boll, S. (1984). Optimal estimators for spectral restoration of noisy speech. In Proceedings of the IEEE international conference on acoustics, speech, and signal processing, Vol. 9, pp. 53–56.
Zurück zum Zitat Rabiner, L. (1989). A tutorial on hidden Markov models and selected applications in speech recognition. Proceedings of the IEEE, 77(2), 257–286.CrossRef Rabiner, L. (1989). A tutorial on hidden Markov models and selected applications in speech recognition. Proceedings of the IEEE, 77(2), 257–286.CrossRef
Zurück zum Zitat Rabiner, L. R., & Juang, B. H. (1993). Fundamentals of speech recognition. Englewood Cliffs: Prentice Hall. Rabiner, L. R., & Juang, B. H. (1993). Fundamentals of speech recognition. Englewood Cliffs: Prentice Hall.
Zurück zum Zitat Rabiner, L. R. & Sambur, M. R. (1975). An algorithm for determining the endpoints of isolated utterances. The Bell System Technical Journal, 54(2), 297–315.CrossRef Rabiner, L. R. & Sambur, M. R. (1975). An algorithm for determining the endpoints of isolated utterances. The Bell System Technical Journal, 54(2), 297–315.CrossRef
Zurück zum Zitat Rahman, M. M., & Bhuiyan, M. A. A. (2012). Continuous Bangla speech segmentation using short-term speech features extraction approaches. International Journal of Advanced Computer Science and Applications, 3(11), 131–138. Rahman, M. M., & Bhuiyan, M. A. A. (2012). Continuous Bangla speech segmentation using short-term speech features extraction approaches. International Journal of Advanced Computer Science and Applications, 3(11), 131–138.
Zurück zum Zitat Rahman, M. Z. U., Shaik, R. A., & Reddy, D. V. (2009). Adaptive noise removal in the ECG using the block LMS algorithm. In Proceedings of the second IEEE international conference on adaptive science and technology, pp. 380–383. Rahman, M. Z. U., Shaik, R. A., & Reddy, D. V. (2009). Adaptive noise removal in the ECG using the block LMS algorithm. In Proceedings of the second IEEE international conference on adaptive science and technology, pp. 380–383.
Zurück zum Zitat Rangachari, S. (2004). Noise estimation algorithms for highly non-stationary environments. MS thesis, University of Texas, Dallas. Rangachari, S. (2004). Noise estimation algorithms for highly non-stationary environments. MS thesis, University of Texas, Dallas.
Zurück zum Zitat Rangachari, S., & Loizou, P. C. (2006). A noise-estimation algorithm for highly non-stationary environments. Speech Communication, 48(2), 220–231.CrossRef Rangachari, S., & Loizou, P. C. (2006). A noise-estimation algorithm for highly non-stationary environments. Speech Communication, 48(2), 220–231.CrossRef
Zurück zum Zitat Rangachari, S., Loizou, P. C., & Hu, Y. (2004). A noise estimation algorithm with rapid adaptation for highly non-stationary environments. Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing, 1, I-305–308. Rangachari, S., Loizou, P. C., & Hu, Y. (2004). A noise estimation algorithm with rapid adaptation for highly non-stationary environments. Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing, 1, I-305–308.
Zurück zum Zitat Reynolds, D. A., & Rose, R. C. (1995). Robust text-independent speaker identification using Gaussian mixture speaker models. IEEE Transactions on Speech and Audio Processing, 3(1), 72–83.CrossRef Reynolds, D. A., & Rose, R. C. (1995). Robust text-independent speaker identification using Gaussian mixture speaker models. IEEE Transactions on Speech and Audio Processing, 3(1), 72–83.CrossRef
Zurück zum Zitat Scalart, P. (1996). Speech enhancement based on a priori signal to noise estimation. In Proceedings of the IEEE international conference on acoustics, speech, and signal processing, Vol. 2, pp. 629–632. Scalart, P. (1996). Speech enhancement based on a priori signal to noise estimation. In Proceedings of the IEEE international conference on acoustics, speech, and signal processing, Vol. 2, pp. 629–632.
Zurück zum Zitat Sunny, S., David, P. S., & Jacob, K. P. (2012). Feature extraction methods based on linear predictive coding and wavelet packet decomposition for recognizing spoken words in Malayalam. In Proceedings of the IEEE international conference on advances in computing and communications, pp. 27–30. Sunny, S., David, P. S., & Jacob, K. P. (2012). Feature extraction methods based on linear predictive coding and wavelet packet decomposition for recognizing spoken words in Malayalam. In Proceedings of the IEEE international conference on advances in computing and communications, pp. 27–30.
Zurück zum Zitat Thangarajan, R., Natarajan, A. M., & Selvam, M. (2009). Syllable modeling in continuous speech recognition for Tamil language. International Journal of Speech Technology, 12(1), 47–57.CrossRef Thangarajan, R., Natarajan, A. M., & Selvam, M. (2009). Syllable modeling in continuous speech recognition for Tamil language. International Journal of Speech Technology, 12(1), 47–57.CrossRef
Zurück zum Zitat Vyas, M. (2013). A Gaussian mixture model based speech recognition system using MATLAB. Signal & Image Processing: An International Journal (SIPIJ), 4, 109–118. Vyas, M. (2013). A Gaussian mixture model based speech recognition system using MATLAB. Signal & Image Processing: An International Journal (SIPIJ), 4, 109–118.
Metadaten
Titel
Continuous Tamil Speech Recognition technique under non stationary noisy environments
verfasst von
M. Kalamani
M. Krishnamoorthi
R. S. Valarmathi
Publikationsdatum
30.11.2018
Verlag
Springer US
Erschienen in
International Journal of Speech Technology / Ausgabe 1/2019
Print ISSN: 1381-2416
Elektronische ISSN: 1572-8110
DOI
https://doi.org/10.1007/s10772-018-09580-8

Weitere Artikel der Ausgabe 1/2019

International Journal of Speech Technology 1/2019 Zur Ausgabe

Neuer Inhalt