Skip to main content
Erschienen in: International Journal of Machine Learning and Cybernetics 4/2024

29.09.2023 | Original Article

Contrastive sequential interaction network learning on co-evolving Riemannian spaces

verfasst von: Li Sun, Junda Ye, Jiawei Zhang, Yong Yang, Mingsheng Liu, Feiyang Wang, Philip S. Yu

Erschienen in: International Journal of Machine Learning and Cybernetics | Ausgabe 4/2024

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The sequential interaction network usually find itself in a variety of applications, e.g., recommender system. Herein, inferring future interaction is of fundamental importance, and previous efforts are mainly focused on the dynamics in the classic zero-curvature Euclidean space. Despite the promising results achieved by previous methods, a range of significant issues still largely remains open: On the bipartite nature, is it appropriate to place user and item nodes in one identical space regardless of their inherent difference? On the network dynamics, instead of a fixed curvature space, will the representation spaces evolve when new interactions arrive continuously? On the learning paradigm, can we get rid of the label information costly to acquire? To address the aforementioned issues, we propose a novel Contrastive model for Sequential Interaction Network learning on Co-Evolving RiEmannian spaces, CSincere. To the best of our knowledge, we are the first to introduce a couple of co-evolving representation spaces, rather than a single or static space, and propose a co-contrastive learning for the sequential interaction network. In CSincere, we formulate a Cross-Space Aggregation for message-passing across representation spaces of different Riemannian geometries, and design a Neural Curvature Estimator based on Ricci curvatures for modeling the space evolvement over time. Thereafter, we present a Reweighed Co-Contrast between the temporal views of the sequential network, so that the couple of Riemannian spaces interact with each other for the interaction prediction without labels. Empirical results on 5 public datasets show the superiority of CSincere over the state-of-the-art methods.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Weitere Produktempfehlungen anzeigen
Fußnoten
1
In Riemannian geometry, the negative curvature space is termed as the hyperbolic space, and positive curvature space is termed as the spherical space.
 
2
We use manifold and space interchangeable throughout this paper.
 
Literatur
1.
Zurück zum Zitat He X, Gao M, Kan M-Y, Liu Y, Sugiyama K (2014) Predicting the popularity of web 2.0 items based on user comments. In: Proceedings of the 37th SIGIR, pp 233–242 He X, Gao M, Kan M-Y, Liu Y, Sugiyama K (2014) Predicting the popularity of web 2.0 items based on user comments. In: Proceedings of the 37th SIGIR, pp 233–242
2.
Zurück zum Zitat Peng H, Yang R, Wang Z, Li J, He L, Yu P, Zomaya A, Ranjan R (2021) Lime: low-cost incremental learning for dynamic heterogeneous information networks. IEEE Trans Comput 71:628–642CrossRef Peng H, Yang R, Wang Z, Li J, He L, Yu P, Zomaya A, Ranjan R (2021) Lime: low-cost incremental learning for dynamic heterogeneous information networks. IEEE Trans Comput 71:628–642CrossRef
3.
Zurück zum Zitat Peng H, Zhang R, Dou Y, Yang R, Zhang J, Yu PS (2021) Reinforced neighborhood selection guided multi-relational graph neural networks. ACM Trans Inf Syst 40(69):1–46 Peng H, Zhang R, Dou Y, Yang R, Zhang J, Yu PS (2021) Reinforced neighborhood selection guided multi-relational graph neural networks. ACM Trans Inf Syst 40(69):1–46
4.
Zurück zum Zitat Yang M, Zhou M, Kalander M, Huang Z, King I (2021) Discrete-time temporal network embedding via implicit hierarchical learning in hyperbolic space. In: Proceedings of KDD, pp 1975–1985 Yang M, Zhou M, Kalander M, Huang Z, King I (2021) Discrete-time temporal network embedding via implicit hierarchical learning in hyperbolic space. In: Proceedings of KDD, pp 1975–1985
5.
Zurück zum Zitat Wang Y, Chang Y-Y, Liu Y, Leskovec J, Li P (2021) Inductive representation learning in temporal networks via causal anonymous walks. In: Proceedings of ICLR Wang Y, Chang Y-Y, Liu Y, Leskovec J, Li P (2021) Inductive representation learning in temporal networks via causal anonymous walks. In: Proceedings of ICLR
6.
Zurück zum Zitat Peng H, Zhang R, Li S, Cao Y, Pan S, Yu PS (2023) Reinforced, incremental and cross-lingual event detection from social messages. IEEE Trans Pattern Anal Mach Intell (early access) 45(1):980–998 Peng H, Zhang R, Li S, Cao Y, Pan S, Yu PS (2023) Reinforced, incremental and cross-lingual event detection from social messages. IEEE Trans Pattern Anal Mach Intell (early access) 45(1):980–998
7.
Zurück zum Zitat Chami I, Ying Z, Ré C, Leskovec J (2019) Hyperbolic graph convolutional neural networks. Adv NeurIPS 32:4868–4879 Chami I, Ying Z, Ré C, Leskovec J (2019) Hyperbolic graph convolutional neural networks. Adv NeurIPS 32:4868–4879
8.
Zurück zum Zitat Mathieu E, Le Lan C, Maddison CJ, Tomioka R, Teh YW (2019) Continuous hierarchical representations with poincaré variational auto-encoders. In: Advances in NeurIPS, pp 12544–12555 Mathieu E, Le Lan C, Maddison CJ, Tomioka R, Teh YW (2019) Continuous hierarchical representations with poincaré variational auto-encoders. In: Advances in NeurIPS, pp 12544–12555
9.
Zurück zum Zitat Gulcehre C, Denil M, Malinowski M, Razavi A, Pascanu R, Hermann KM, Battaglia P, Bapst V, Raposo D, Santoro A, Freitas N (2019) Hyperbolic attention networks. In: Proceedings of ICLR, pp 1–15 Gulcehre C, Denil M, Malinowski M, Razavi A, Pascanu R, Hermann KM, Battaglia P, Bapst V, Raposo D, Santoro A, Freitas N (2019) Hyperbolic attention networks. In: Proceedings of ICLR, pp 1–15
10.
Zurück zum Zitat Zhang Y, Wang X, Shi C, Liu N, Song G (2021) Lorentzian graph convolutional networks. In: Proceedings of WWW, pp 1249–1261 Zhang Y, Wang X, Shi C, Liu N, Song G (2021) Lorentzian graph convolutional networks. In: Proceedings of WWW, pp 1249–1261
11.
Zurück zum Zitat Nickel M, Kiela D (2017) Poincaré embeddings for learning hierarchical representations. In: Advances in NeurIPS, pp 6338–6347 Nickel M, Kiela D (2017) Poincaré embeddings for learning hierarchical representations. In: Advances in NeurIPS, pp 6338–6347
12.
Zurück zum Zitat Ganea O, Bécigneul G, Hofmann T (2018) Hyperbolic neural networks. In: Advances in NeurIPS, pp 5345–5355 Ganea O, Bécigneul G, Hofmann T (2018) Hyperbolic neural networks. In: Advances in NeurIPS, pp 5345–5355
13.
Zurück zum Zitat Defferrard M, Milani M, Gusset F, Perraudin N (2020) Deepsphere: a graph-based spherical cnn. In: Proceedings of ICLR Defferrard M, Milani M, Gusset F, Perraudin N (2020) Deepsphere: a graph-based spherical cnn. In: Proceedings of ICLR
14.
Zurück zum Zitat Rezende DJ, Papamakarios G, Racaniere S, Albergo M, Kanwar G, Shanahan P, Cranmer K (2020) Normalizing flows on tori and spheres. In: Proceedings of ICML, pp 8083–8092 Rezende DJ, Papamakarios G, Racaniere S, Albergo M, Kanwar G, Shanahan P, Cranmer K (2020) Normalizing flows on tori and spheres. In: Proceedings of ICML, pp 8083–8092
15.
Zurück zum Zitat Fan Z, Liu Z, Zhang J, Xiong Y, Zheng L, Yu PS (2021) Continuous-time sequential recommendation with temporal graph collaborative transformer. In: Proceedings of the 30th CIKM, pp 433–442 Fan Z, Liu Z, Zhang J, Xiong Y, Zheng L, Yu PS (2021) Continuous-time sequential recommendation with temporal graph collaborative transformer. In: Proceedings of the 30th CIKM, pp 433–442
16.
Zurück zum Zitat Cao J, Lin X, Guo S, Liu L, Liu T, Wang B (2021) Bipartite graph embedding via mutual information maximization. In: Proceedings of the 14th CIKM, pp 635–643 Cao J, Lin X, Guo S, Liu L, Liu T, Wang B (2021) Bipartite graph embedding via mutual information maximization. In: Proceedings of the 14th CIKM, pp 635–643
17.
Zurück zum Zitat Dai H, Wang Y, Trivedi R, Song L (2016) Deep coevolutionary network: embedding user and item features for recommendation. arXiv:1609.03675 Dai H, Wang Y, Trivedi R, Song L (2016) Deep coevolutionary network: embedding user and item features for recommendation. arXiv:​1609.​03675
18.
Zurück zum Zitat Nguyen GH, Lee JB, Rossi RA, Ahmed NK, Koh E, Kim S (2018) Continuous-time dynamic network embeddings. In: Companion proceedings of the Web conference 2018, pp 969–976 Nguyen GH, Lee JB, Rossi RA, Ahmed NK, Koh E, Kim S (2018) Continuous-time dynamic network embeddings. In: Companion proceedings of the Web conference 2018, pp 969–976
19.
Zurück zum Zitat Kefato Z, Girdzijauskas S, Sheikh N, Montresor A (2021) Dynamic embeddings for interaction prediction. In: Proceedings of the Web conference 2021, pp 1609–1618 Kefato Z, Girdzijauskas S, Sheikh N, Montresor A (2021) Dynamic embeddings for interaction prediction. In: Proceedings of the Web conference 2021, pp 1609–1618
20.
Zurück zum Zitat Beutel A, Covington P, Jain S, Xu C, Li J, Gatto V, Chi EH (2018) Latent cross: making use of context in recurrent recommender systems. In: Proceedings of the 11th WSDM, pp 46–54 Beutel A, Covington P, Jain S, Xu C, Li J, Gatto V, Chi EH (2018) Latent cross: making use of context in recurrent recommender systems. In: Proceedings of the 11th WSDM, pp 46–54
21.
Zurück zum Zitat Sreejith R, Mohanraj K, Jost J, Saucan E, Samal A (2016) Forman curvature for complex networks. J Stat Mech Theory Exp 2016(6):063206MathSciNetCrossRef Sreejith R, Mohanraj K, Jost J, Saucan E, Samal A (2016) Forman curvature for complex networks. J Stat Mech Theory Exp 2016(6):063206MathSciNetCrossRef
22.
Zurück zum Zitat Bachmann G, Becigneul G, Ganea O (2020) Constant curvature graph convolutional networks. In: Proceedings of the 37th ICML, vol 119, pp 486–496 Bachmann G, Becigneul G, Ganea O (2020) Constant curvature graph convolutional networks. In: Proceedings of the 37th ICML, vol 119, pp 486–496
23.
Zurück zum Zitat Gromov M (1987) In: Gersten SM (ed) Hyperbolic groups. Springer, New York, pp 75–263 Gromov M (1987) In: Gersten SM (ed) Hyperbolic groups. Springer, New York, pp 75–263
24.
Zurück zum Zitat Vinh Tran L, Tay Y, Zhang S, Cong G, Li X (2020) HyperML: a boosting metric learning approach in hyperbolic space for recommender systems, pp 609–617 Vinh Tran L, Tay Y, Zhang S, Cong G, Li X (2020) HyperML: a boosting metric learning approach in hyperbolic space for recommender systems, pp 609–617
25.
Zurück zum Zitat Kumar S, Zhang X, Leskovec J (2019) Predicting dynamic embedding trajectory in temporal interaction networks. In: Proceedings of the 25th KDD, pp 1269–1278 Kumar S, Zhang X, Leskovec J (2019) Predicting dynamic embedding trajectory in temporal interaction networks. In: Proceedings of the 25th KDD, pp 1269–1278
26.
Zurück zum Zitat Chen H, Xiong Y, Zhu Y, Yu PS (2021) Highly liquid temporal interaction graph embeddings. In: Proceedings of the Web conference 2021, pp 1639–1648 Chen H, Xiong Y, Zhu Y, Yu PS (2021) Highly liquid temporal interaction graph embeddings. In: Proceedings of the Web conference 2021, pp 1639–1648
27.
Zurück zum Zitat Zhu Y, Li H, Liao Y, Wang B, Guan Z, Liu H, Cai D (2017) What to do next: modeling user behaviors by time-lstm. In: Proceedings of the 26th IJCAI, vol 17, pp 3602–3608 Zhu Y, Li H, Liao Y, Wang B, Guan Z, Liu H, Cai D (2017) What to do next: modeling user behaviors by time-lstm. In: Proceedings of the 26th IJCAI, vol 17, pp 3602–3608
28.
Zurück zum Zitat Baytas IM, Xiao C, Zhang X, Wang F, Jain AK, Zhou J (2017) Patient subtyping via time-aware lstm networks. In: Proceedings of the 23rd KDD, pp 65–74 Baytas IM, Xiao C, Zhang X, Wang F, Jain AK, Zhou J (2017) Patient subtyping via time-aware lstm networks. In: Proceedings of the 23rd KDD, pp 65–74
29.
Zurück zum Zitat Ye J, Zhang Z, Sun L, Yan Y, Wang F, Ren F (2023) Sincere: sequential interaction networks representation learning on co-evolving Riemannian manifolds. In: Proceedings of ACM The Web conference (WWW), pp 1–10 Ye J, Zhang Z, Sun L, Yan Y, Wang F, Ren F (2023) Sincere: sequential interaction networks representation learning on co-evolving Riemannian manifolds. In: Proceedings of ACM The Web conference (WWW), pp 1–10
30.
Zurück zum Zitat Ungar AA (2008) A gyrovector space approach to hyperbolic geometry. Synth Lect Math Stat 1(1):1–194MathSciNet Ungar AA (2008) A gyrovector space approach to hyperbolic geometry. Synth Lect Math Stat 1(1):1–194MathSciNet
31.
Zurück zum Zitat Ye Z, Liu KS, Ma T, Gao J, Chen C (2020) Curvature graph network. In: Proceedings of ICLR Ye Z, Liu KS, Ma T, Gao J, Chen C (2020) Curvature graph network. In: Proceedings of ICLR
33.
Zurück zum Zitat Dai J, Wu Y, Gao Z, Jia Y (2021) A hyperbolic-to-hyperbolic graph convolutional network. In: Proceedings of CVPR, pp 154–163 Dai J, Wu Y, Gao Z, Jia Y (2021) A hyperbolic-to-hyperbolic graph convolutional network. In: Proceedings of CVPR, pp 154–163
34.
Zurück zum Zitat Chen W, Han X, Lin Y, Zhao H, Liu Z, Li P, Sun M, Zhou J (2022) Fully hyperbolic neural networks. In: Proceedings of the 60th ACL, pp 5672–5686 Chen W, Han X, Lin Y, Zhao H, Liu Z, Li P, Sun M, Zhou J (2022) Fully hyperbolic neural networks. In: Proceedings of the 60th ACL, pp 5672–5686
35.
36.
Zurück zum Zitat Forman R (2003) Bochner’s method for cell complexes and combinatorial Ricci curvature. Discrete Comput Geom 29(3):323–374MathSciNetCrossRef Forman R (2003) Bochner’s method for cell complexes and combinatorial Ricci curvature. Discrete Comput Geom 29(3):323–374MathSciNetCrossRef
38.
Zurück zum Zitat Xu D, Ruan C, Korpeoglu E, Kumar S, Achan K (2020) Inductive representation learning on temporal graphs. In: Proceedings of ICLR Xu D, Ruan C, Korpeoglu E, Kumar S, Achan K (2020) Inductive representation learning on temporal graphs. In: Proceedings of ICLR
39.
Zurück zum Zitat Sia J, Jonckheere E, Bogdan P (2019) Ollivier–Ricci curvature-based method to community detection in complex networks. Sci Rep 9(1):1–12ADSCrossRef Sia J, Jonckheere E, Bogdan P (2019) Ollivier–Ricci curvature-based method to community detection in complex networks. Sci Rep 9(1):1–12ADSCrossRef
40.
Zurück zum Zitat Gu A, Sala F, Gunel B, Re C (2019) Learning mixed-curvature representations in product spaces. In: Proceedings of ICLR Gu A, Sala F, Gunel B, Re C (2019) Learning mixed-curvature representations in product spaces. In: Proceedings of ICLR
41.
Zurück zum Zitat Fu X, Li J, Wu J, Sun Q, Ji C, Wang S, Tan J, Peng H, Yu PS (2021) Ace-hgnn: adaptive curvature exploration hyperbolic graph neural network. In: Proceedings of ICDM, pp 111–120 Fu X, Li J, Wu J, Sun Q, Ji C, Wang S, Tan J, Peng H, Yu PS (2021) Ace-hgnn: adaptive curvature exploration hyperbolic graph neural network. In: Proceedings of ICDM, pp 111–120
42.
Zurück zum Zitat Yang H, Chen H, Pan S, Li L, Yu PS, Xu G (2022) Dual space graph contrastive learning. In: Proceedings of The ACM Web conference, pp 1238–1247 Yang H, Chen H, Pan S, Li L, Yu PS, Xu G (2022) Dual space graph contrastive learning. In: Proceedings of The ACM Web conference, pp 1238–1247
43.
Zurück zum Zitat Hassani K, Ahmadi AHK (2020) Contrastive multi-view representation learning on graphs. In: Proceedings of ICML, vol 119, pp 4116–4126 Hassani K, Ahmadi AHK (2020) Contrastive multi-view representation learning on graphs. In: Proceedings of ICML, vol 119, pp 4116–4126
44.
Zurück zum Zitat Qiu J, Chen Q, Dong Y, Zhang J, Yang H, Ding M, Wang K, Tang J (2020) GCC: graph contrastive coding for graph neural network pre-training. In: Proceedings of KDD, pp 1150–1160 Qiu J, Chen Q, Dong Y, Zhang J, Yang H, Ding M, Wang K, Tang J (2020) GCC: graph contrastive coding for graph neural network pre-training. In: Proceedings of KDD, pp 1150–1160
45.
Zurück zum Zitat Sun L, Ye J, Peng H, Yu PS (2022) A self-supervised Riemannian GNN with time varying curvature for temporal graph learning. In: Proceedings of the 31st CIKM, pp 1827–1836 Sun L, Ye J, Peng H, Yu PS (2022) A self-supervised Riemannian GNN with time varying curvature for temporal graph learning. In: Proceedings of the 31st CIKM, pp 1827–1836
46.
Zurück zum Zitat Tian S, Wu R, Shi L, Zhu L, Xiong T (2021) Self-supervised representation learning on dynamic graphs. In: Proceedings of the 30th CIKM, pp 1814–1823 Tian S, Wu R, Shi L, Zhu L, Xiong T (2021) Self-supervised representation learning on dynamic graphs. In: Proceedings of the 30th CIKM, pp 1814–1823
48.
Zurück zum Zitat Veličković P, Fedus W, Hamilton WL, Liò P, Bengio Y, Hjelm RD (2019) Deep graph infomax. In: Proceedings of ICLR, pp 1–24 Veličković P, Fedus W, Hamilton WL, Liò P, Bengio Y, Hjelm RD (2019) Deep graph infomax. In: Proceedings of ICLR, pp 1–24
49.
Zurück zum Zitat Robinson JD, Chuang C, Sra S, Jegelka S (2021) Contrastive learning with hard negative samples. In: Proceedings of the 9th ICLR Robinson JD, Chuang C, Sra S, Jegelka S (2021) Contrastive learning with hard negative samples. In: Proceedings of the 9th ICLR
50.
Zurück zum Zitat Xia J, Wu L, Wang G, Chen J, Li SZ (2022) Progcl: rethinking hard negative mining in graph contrastive learning. In: Proceedings of ICML, vol 162, pp 24332–24346 Xia J, Wu L, Wang G, Chen J, Li SZ (2022) Progcl: rethinking hard negative mining in graph contrastive learning. In: Proceedings of ICML, vol 162, pp 24332–24346
51.
Zurück zum Zitat Ni C, Lin Y, Luo F, Gao (2019)Community detection on networks with Ricci flow. Nat Sci Rep 9(9984):1–12 Ni C, Lin Y, Luo F, Gao (2019)Community detection on networks with Ricci flow. Nat Sci Rep 9(9984):1–12
52.
Zurück zum Zitat Ye Z, Liu KS, Ma T, Gao J, C (2020) Curvature graph network. In: Proceedings of the 8th ICLR Ye Z, Liu KS, Ma T, Gao J, C (2020) Curvature graph network. In: Proceedings of the 8th ICLR
53.
Zurück zum Zitat Wu C-Y, Ahmed A, Beutel A, Smola AJ, Jing H (2017) Recurrent recommender networks. In: Proceedings of the 10th WSDM, pp 495–503 Wu C-Y, Ahmed A, Beutel A, Smola AJ, Jing H (2017) Recurrent recommender networks. In: Proceedings of the 10th WSDM, pp 495–503
54.
Zurück zum Zitat Sun J, Cheng Z, Zuberi S, Perez F, Volkovs M (2021) Hgcf: Hyperbolic graph convolution networks for collaborative filtering. In: Proceedings of the Web conference 2021, pp 593–601 Sun J, Cheng Z, Zuberi S, Perez F, Volkovs M (2021) Hgcf: Hyperbolic graph convolution networks for collaborative filtering. In: Proceedings of the Web conference 2021, pp 593–601
55.
Zurück zum Zitat Shimizu R, Mukuta Y, Harada T (2021) Hyperbolic neural networks++. In: Proceedings of ICLR, pp 1–25 Shimizu R, Mukuta Y, Harada T (2021) Hyperbolic neural networks++. In: Proceedings of ICLR, pp 1–25
57.
Zurück zum Zitat Wang Y, Cai Y, Liang Y, Ding H, Wang C, Bhatia S, Hooi B (2021) Adaptive data augmentation on temporal graphs. In: Advances in NeurIPS, vol 34, pp 1440–1452 Wang Y, Cai Y, Liang Y, Ding H, Wang C, Bhatia S, Hooi B (2021) Adaptive data augmentation on temporal graphs. In: Advances in NeurIPS, vol 34, pp 1440–1452
58.
Zurück zum Zitat Zuo Y, Liu G, Lin H, Guo J, Hu X, Wu J (2018) Embedding temporal network via neighborhood formation. In: Proceedings of KDD, pp 2857–2866 Zuo Y, Liu G, Lin H, Guo J, Hu X, Wu J (2018) Embedding temporal network via neighborhood formation. In: Proceedings of KDD, pp 2857–2866
59.
Zurück zum Zitat Gupta S, Manchanda S, Bedathur S, Ranu S (2022) Tigger: scalable generative modelling for temporal interaction graphs. In: Proceedings of AAAI, vol 36, pp 6819–6828 Gupta S, Manchanda S, Bedathur S, Ranu S (2022) Tigger: scalable generative modelling for temporal interaction graphs. In: Proceedings of AAAI, vol 36, pp 6819–6828
60.
Zurück zum Zitat Xia W, Li Y, Li S (2023) Graph neural point process for temporal interaction prediction. IEEE Trans Knowl Data Eng 35(5):4867–4879 Xia W, Li Y, Li S (2023) Graph neural point process for temporal interaction prediction. IEEE Trans Knowl Data Eng 35(5):4867–4879
61.
Zurück zum Zitat Zhang Y, Xiong Y, Liao Y, Sun Y, Jin Y, Zheng X, Zhu Y (2023) TIGER: temporal interaction graph embedding with restarts. In: Proceedings of the ACM Web conference 2023 (WWW), pp 478–488 Zhang Y, Xiong Y, Liao Y, Sun Y, Jin Y, Zheng X, Zhu Y (2023) TIGER: temporal interaction graph embedding with restarts. In: Proceedings of the ACM Web conference 2023 (WWW), pp 478–488
62.
Zurück zum Zitat Kazemi SM, Goel R, Jain K, Kobyzev I, Sethi A, Forsyth P, Poupart P (2020) Representation learning for dynamic graphs: a survey. J Mach Learn Res 21(70):1–73MathSciNet Kazemi SM, Goel R, Jain K, Kobyzev I, Sethi A, Forsyth P, Poupart P (2020) Representation learning for dynamic graphs: a survey. J Mach Learn Res 21(70):1–73MathSciNet
63.
Zurück zum Zitat Aggarwal C, Subbian K (2014) Evolutionary network analysis: a survey. ACM Comput Surv: CSUR 47(1):1–36CrossRef Aggarwal C, Subbian K (2014) Evolutionary network analysis: a survey. ACM Comput Surv: CSUR 47(1):1–36CrossRef
64.
Zurück zum Zitat Suzuki R, Takahama R, Onoda S (2019) Hyperbolic disk embeddings for directed acyclic graphs. In: Proceedings of ICML, pp 6066–6075 Suzuki R, Takahama R, Onoda S (2019) Hyperbolic disk embeddings for directed acyclic graphs. In: Proceedings of ICML, pp 6066–6075
65.
Zurück zum Zitat Chami I, Ying Z, Ré C, Leskovec J (2019) Hyperbolic graph convolutional neural networks. In: Advances in NeurIPS, pp 4869–4880 Chami I, Ying Z, Ré C, Leskovec J (2019) Hyperbolic graph convolutional neural networks. In: Advances in NeurIPS, pp 4869–4880
66.
Zurück zum Zitat Liu Q, Nickel M, Kiela D (2019) Hyperbolic graph neural networks. In: Advances in NeurIPS, pp 8228–8239 Liu Q, Nickel M, Kiela D (2019) Hyperbolic graph neural networks. In: Advances in NeurIPS, pp 8228–8239
67.
Zurück zum Zitat Bachmann G, Bécigneul G, Ganea O (2020) Constant curvature graph convolutional networks. In: Proceedings of ICML, vol 119, pp 486–496 Bachmann G, Bécigneul G, Ganea O (2020) Constant curvature graph convolutional networks. In: Proceedings of ICML, vol 119, pp 486–496
68.
Zurück zum Zitat Xiong B, Zhu S, Nayyeri M, Xu C, Pan S, Zhou C, Staab S (2022)Ultrahyperbolic knowledge graph embeddings. In: Proceedings of KDD, pp 2130–2139 Xiong B, Zhu S, Nayyeri M, Xu C, Pan S, Zhou C, Staab S (2022)Ultrahyperbolic knowledge graph embeddings. In: Proceedings of KDD, pp 2130–2139
69.
Zurück zum Zitat Xiong, B., Zhu, S., Potyka, N., Pan, S., Zhu, C., Staab, S.: Pseudo-riemannian graph convolutional networks. In: Advances in 36th NeurIPS, pp. 1–21 (2022) Xiong, B., Zhu, S., Potyka, N., Pan, S., Zhu, C., Staab, S.: Pseudo-riemannian graph convolutional networks. In: Advances in 36th NeurIPS, pp. 1–21 (2022)
70.
Zurück zum Zitat Law M (2021) Ultrahyperbolic neural networks. In: Advances in NeurIPS, vol 34, pp 22058–22069 Law M (2021) Ultrahyperbolic neural networks. In: Advances in NeurIPS, vol 34, pp 22058–22069
71.
Zurück zum Zitat Gu A, Sala F, Gunel B, Ré C (2019) Learning mixed-curvature representations in product spaces. In: Proceedings of ICLR, pp 1–21 Gu A, Sala F, Gunel B, Ré C (2019) Learning mixed-curvature representations in product spaces. In: Proceedings of ICLR, pp 1–21
72.
Zurück zum Zitat Wang S, Wei X, Santos CN, Wang Z, Nallapati R, Arnold AO, Xiang B, Yu PS, Cruz IF (2021) Mixed-curvature multi-relational graph neural network for knowledge graph completion. In: Proceedings of The ACM Web conference, pp 1761–1771 Wang S, Wei X, Santos CN, Wang Z, Nallapati R, Arnold AO, Xiang B, Yu PS, Cruz IF (2021) Mixed-curvature multi-relational graph neural network for knowledge graph completion. In: Proceedings of The ACM Web conference, pp 1761–1771
73.
Zurück zum Zitat Skopek O, Ganea O-E, Becigneul G (2020) Mixed-curvature variational autoencoders. In: Proceedings of ICLR Skopek O, Ganea O-E, Becigneul G (2020) Mixed-curvature variational autoencoders. In: Proceedings of ICLR
74.
Zurück zum Zitat Sun L, Zhang Z, Ye J, Peng H, Zhang J, Su S, Yu PS (2022) A self-supervised mixed-curvature graph neural network. In: Proceedings of AAAI, vol 36, pp 4146–4155 Sun L, Zhang Z, Ye J, Peng H, Zhang J, Su S, Yu PS (2022) A self-supervised mixed-curvature graph neural network. In: Proceedings of AAAI, vol 36, pp 4146–4155
75.
Zurück zum Zitat Cruceru C, Bécigneul G, Ganea O (2021) Computationally tractable Riemannian manifolds for graph embeddings. In: Proceedings of AAAI, pp 7133–7141 Cruceru C, Bécigneul G, Ganea O (2021) Computationally tractable Riemannian manifolds for graph embeddings. In: Proceedings of AAAI, pp 7133–7141
76.
Zurück zum Zitat Zhu S, Pan S, Zhou C, Wu J, Cao Y, Wang B (2020) Graph geometry interaction learning. In: Advances in NeurIPS, vol 33, pp 7548–7558 Zhu S, Pan S, Zhou C, Wu J, Cao Y, Wang B (2020) Graph geometry interaction learning. In: Advances in NeurIPS, vol 33, pp 7548–7558
77.
Zurück zum Zitat Sun L, Zhang Z, Zhang J, Wang F, Peng H, Su S, Yu PS (2021) Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp 4375–4383 Sun L, Zhang Z, Zhang J, Wang F, Peng H, Su S, Yu PS (2021) Hyperbolic variational graph neural network for modeling dynamic graphs. In: Proceedings of the 35th AAAI, pp 4375–4383
78.
Zurück zum Zitat Sun L, Ye J, Peng H, Wang F, Yu PS (2023) Self-supervised continual graph learning in adaptive riemannian spaces. In: Proceedings of the 37th AAAI, pp 4633–4642 Sun L, Ye J, Peng H, Wang F, Yu PS (2023) Self-supervised continual graph learning in adaptive riemannian spaces. In: Proceedings of the 37th AAAI, pp 4633–4642
79.
Zurück zum Zitat Sun L, Ye J, Peng H, Yu PS (2022) A self-supervised Riemannian GNN with time varying curvature for temporal graph learning. In: Proceedings of the 31st CIKM, pp 1827–1836 Sun L, Ye J, Peng H, Yu PS (2022) A self-supervised Riemannian GNN with time varying curvature for temporal graph learning. In: Proceedings of the 31st CIKM, pp 1827–1836
80.
Zurück zum Zitat Sun L, Wang F, Ye J, Peng H, Yu PS (2023) CONGREGATE: contrastive graph clustering in curvature spaces. In: Proceedings of the 32nd IJCAI, pp 2296–2305 Sun L, Wang F, Ye J, Peng H, Yu PS (2023) CONGREGATE: contrastive graph clustering in curvature spaces. In: Proceedings of the 32nd IJCAI, pp 2296–2305
Metadaten
Titel
Contrastive sequential interaction network learning on co-evolving Riemannian spaces
verfasst von
Li Sun
Junda Ye
Jiawei Zhang
Yong Yang
Mingsheng Liu
Feiyang Wang
Philip S. Yu
Publikationsdatum
29.09.2023
Verlag
Springer Berlin Heidelberg
Erschienen in
International Journal of Machine Learning and Cybernetics / Ausgabe 4/2024
Print ISSN: 1868-8071
Elektronische ISSN: 1868-808X
DOI
https://doi.org/10.1007/s13042-023-01974-8

Weitere Artikel der Ausgabe 4/2024

International Journal of Machine Learning and Cybernetics 4/2024 Zur Ausgabe

Neuer Inhalt