Skip to main content
Erschienen in: Electrical Engineering 1/2020

14.11.2019 | Original Paper

Control and analysis of bidirectional interleaved hybrid converter with coupled inductors for electric vehicle applications

verfasst von: Hedra Saleeb, Khairy Sayed, Ahmed Kassem, Ramadan Mostafa

Erschienen in: Electrical Engineering | Ausgabe 1/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This paper proposes a novel bidirectional interleaved hybrid converter which uses coupled inductors (CIs) for battery electric vehicles (BEVs) in order to optimize the performance of the power train. In this paper, a hybrid converter is proposed and designed to realize the integration of the DC/DC converter, and DC/AC inverter together in the BEVs power train with high performance in any operating mode, acting as a backup generator to supply emergency power directly to home. The proposed hybrid converter can improve the system cost, volume, and increase efficiency and reliability. Here, interleaving structure is used to increase power rating, reduce the input current ripple, output voltage ripple, power loss, and increase efficiency. The performance of the proposed converter is improved by using CIs of energy storage inductors. This integrated magnetic design structure reduces the size and improves the converter performance, both steady state and transient. A detailed study of the operating principle and design considerations is presented. In addition, low electromagnetic interference and low stress in the power switching devices are expected. The proposed topology and its control strategy are designed and analyzed using MATLAB/Simulink. Finally, the proposed topology is experimentally validated with results experimental work obtained from the prototype that has been built and integrated into our lab.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Chan CC, Bouscayrol A, Chen K (2010) Electric, hybrid, and fuel-cell vehicles: architectures and modeling. IEEE Trans Veh Technol 59(2):589–598CrossRef Chan CC, Bouscayrol A, Chen K (2010) Electric, hybrid, and fuel-cell vehicles: architectures and modeling. IEEE Trans Veh Technol 59(2):589–598CrossRef
2.
Zurück zum Zitat Chan CC (2007) The state of the art of electric and hybrid, and fuel cell vehicles. Proc IEEE 95(4):704–718CrossRef Chan CC (2007) The state of the art of electric and hybrid, and fuel cell vehicles. Proc IEEE 95(4):704–718CrossRef
3.
Zurück zum Zitat Emadi A, Williamson SS, Khaligh A (2006) Power electronics intensive solutions for advanced electric, hybrid electric, and fuel cell vehicular power systems. IEEE Trans Power Electron 21(3):567–577CrossRef Emadi A, Williamson SS, Khaligh A (2006) Power electronics intensive solutions for advanced electric, hybrid electric, and fuel cell vehicular power systems. IEEE Trans Power Electron 21(3):567–577CrossRef
4.
Zurück zum Zitat Emadi A, Lee YJ, Rajashekara K (2008) Power electronics and motor drives in electric, hybrid electric, and plug-in hybrid electric vehicles. IEEE Trans. Ind. Electron 55(6):2237–2245CrossRef Emadi A, Lee YJ, Rajashekara K (2008) Power electronics and motor drives in electric, hybrid electric, and plug-in hybrid electric vehicles. IEEE Trans. Ind. Electron 55(6):2237–2245CrossRef
5.
Zurück zum Zitat Raghavan SS, Onar OC, Khaligh A (2010) Power electronic interfaces for future plug-in transportation systems. IEEE Power Electron Soc Newslett 24(3):23–26 Raghavan SS, Onar OC, Khaligh A (2010) Power electronic interfaces for future plug-in transportation systems. IEEE Power Electron Soc Newslett 24(3):23–26
6.
Zurück zum Zitat Lee Y-J, Khaligh A, Emadi A (2009) Advanced integrated bidirectional AC–DC and DC–DC converter for plug-in hybrid electric vehicles. IEEE Trans Veh Technol 58(8):3970–3980CrossRef Lee Y-J, Khaligh A, Emadi A (2009) Advanced integrated bidirectional AC–DC and DC–DC converter for plug-in hybrid electric vehicles. IEEE Trans Veh Technol 58(8):3970–3980CrossRef
7.
Zurück zum Zitat Pahlevaninezhad M, Das P, Drobnik J, Jain PK, Bakhshai A (2012) A new control approach based on the differential flatness theory for an AC/DC converter used in electric vehicles. IEEE Trans Power Electron 27(4):2085–2103CrossRef Pahlevaninezhad M, Das P, Drobnik J, Jain PK, Bakhshai A (2012) A new control approach based on the differential flatness theory for an AC/DC converter used in electric vehicles. IEEE Trans Power Electron 27(4):2085–2103CrossRef
8.
Zurück zum Zitat Kramer W, Chakraborty S, Kroposki B, Thomas H (2008) Advanced power electronics interfaces for distributed energy systems, Part 1: Systems and topologies. National Renewable Energy Lab., Golden, CO, USA, Tech. Rep. F4, 2008 Kramer W, Chakraborty S, Kroposki B, Thomas H (2008) Advanced power electronics interfaces for distributed energy systems, Part 1: Systems and topologies. National Renewable Energy Lab., Golden, CO, USA, Tech. Rep. F4, 2008
9.
Zurück zum Zitat Hegazy O, Van Mierlo J, Lataire P (2011) Control and analysis of an integrated bidirectional DC/AC and DC/DC converters for plug-in hybrid electric vehicle applications. J Power Electron 11(4):408–417CrossRef Hegazy O, Van Mierlo J, Lataire P (2011) Control and analysis of an integrated bidirectional DC/AC and DC/DC converters for plug-in hybrid electric vehicle applications. J Power Electron 11(4):408–417CrossRef
10.
Zurück zum Zitat Hegazy O, Van Mierlo J, Lataire P (2011) Analysis, control, and comparison of DC/DC boost converter topologies for fuel cell hybrid electric vehicle applications. Presented at the IEEE Eur. Conf. Power Electron. Appl., Birmingham, U.K., Aug. 30–Sep. 1, 2011 Hegazy O, Van Mierlo J, Lataire P (2011) Analysis, control, and comparison of DC/DC boost converter topologies for fuel cell hybrid electric vehicle applications. Presented at the IEEE Eur. Conf. Power Electron. Appl., Birmingham, U.K., Aug. 30–Sep. 1, 2011
11.
Zurück zum Zitat Kim S, Williamson SS (2010) Modeling, design, and control of a fuel cell/battery/ultra-capacitor electric vehicle energy storage system. Presented at the vehicle power propulsion conference, Lille, France Kim S, Williamson SS (2010) Modeling, design, and control of a fuel cell/battery/ultra-capacitor electric vehicle energy storage system. Presented at the vehicle power propulsion conference, Lille, France
12.
Zurück zum Zitat Xu H, Wen X, Kong L (2004) Dual-phase dc–dc converter in fuel cell electric vehicles. In: 9th IEEE international power electronics congress Xu H, Wen X, Kong L (2004) Dual-phase dc–dc converter in fuel cell electric vehicles. In: 9th IEEE international power electronics congress
13.
Zurück zum Zitat Kazimierczuk MK (2008) Pulse-width modulated Dc–Dc power converters. Wiley, HobokenCrossRef Kazimierczuk MK (2008) Pulse-width modulated Dc–Dc power converters. Wiley, HobokenCrossRef
14.
Zurück zum Zitat Florescu A, Stocklosa O, Teodorescu M, Radoi C, Stoichescu D, Rosu S. The advantages, limitations, and disadvantages of Z-source inverter. In: Proceedings of semiconductor conference (CAS 2010); 2010. pp 483–486 Florescu A, Stocklosa O, Teodorescu M, Radoi C, Stoichescu D, Rosu S. The advantages, limitations, and disadvantages of Z-source inverter. In: Proceedings of semiconductor conference (CAS 2010); 2010. pp 483–486
15.
Zurück zum Zitat Biel D, Guinjoan F, Fossas E, Chavarria J (2004) Sliding mode control design of a boost buck switching converter for AC signal generation. IEEE Trans Circuits Syst I Regul Pap 51:1539–1551CrossRef Biel D, Guinjoan F, Fossas E, Chavarria J (2004) Sliding mode control design of a boost buck switching converter for AC signal generation. IEEE Trans Circuits Syst I Regul Pap 51:1539–1551CrossRef
16.
Zurück zum Zitat Florescu A, Vasile A, Radoi C, Stoichescu DA (2010) Z-source inverter for fuel cell vehicles. IEEE 16th International Symposium for Design and Technology in Electronic Packaging (SIITME), Pitesti, Romania, 23–26 Sept 2010, pp 219–222 Florescu A, Vasile A, Radoi C, Stoichescu DA (2010) Z-source inverter for fuel cell vehicles. IEEE 16th International Symposium for Design and Technology in Electronic Packaging (SIITME), Pitesti, Romania, 23–26 Sept 2010, pp 219–222
17.
Zurück zum Zitat Miaosen S (2007) Z-source inverter design, analysis, and its application in fuel cell vehicles. Ph.D. dissertation, Michigan State University, East Lansing, USA Miaosen S (2007) Z-source inverter design, analysis, and its application in fuel cell vehicles. Ph.D. dissertation, Michigan State University, East Lansing, USA
18.
Zurück zum Zitat Nguyen M-K, Lim Y-C, Cho G-B (2011) Switched inductor quasi-Z-source inverter. IEEE Trans Power Electron 26(11):3183–3191CrossRef Nguyen M-K, Lim Y-C, Cho G-B (2011) Switched inductor quasi-Z-source inverter. IEEE Trans Power Electron 26(11):3183–3191CrossRef
19.
Zurück zum Zitat Shen M, Joseph A, Wang J, Peng FZ, Adams DJ (2007) Comparison of traditional inverters and Z-source inverter for fuel cell vehicles. IEEE Trans Power Electron 22:1453–1463CrossRef Shen M, Joseph A, Wang J, Peng FZ, Adams DJ (2007) Comparison of traditional inverters and Z-source inverter for fuel cell vehicles. IEEE Trans Power Electron 22:1453–1463CrossRef
20.
Zurück zum Zitat Peng FZ, Shen M, Holland K (2007) Application of Z-source inverter for traction drive of fuel cell-battery hybrid electric vehicles. IEEE Trans Power Electron 22:1054–1061CrossRef Peng FZ, Shen M, Holland K (2007) Application of Z-source inverter for traction drive of fuel cell-battery hybrid electric vehicles. IEEE Trans Power Electron 22:1054–1061CrossRef
21.
22.
Zurück zum Zitat Sanchis P, Ursæa A, Gubía E, Marroyo L (2005) Boost DC AC inverter: a new control strategy. IEEE Trans Power Electron 20:343–353CrossRef Sanchis P, Ursæa A, Gubía E, Marroyo L (2005) Boost DC AC inverter: a new control strategy. IEEE Trans Power Electron 20:343–353CrossRef
23.
Zurück zum Zitat Abeywardana DBW, Hredzak B, Agelidis VG (2015) Single-phase grid-connected LiFePO4 battery-supercapacitor hybrid energy storage system with interleaved boost inverter. IEEE Trans Power Electron 30:5591–5604CrossRef Abeywardana DBW, Hredzak B, Agelidis VG (2015) Single-phase grid-connected LiFePO4 battery-supercapacitor hybrid energy storage system with interleaved boost inverter. IEEE Trans Power Electron 30:5591–5604CrossRef
24.
Zurück zum Zitat Knight A, Ewanchuk J, Salmon J (2008) Coupled three-phase inductors for interleaved inverter switching. IEEE Trans Magn 44(11):4119–4122CrossRef Knight A, Ewanchuk J, Salmon J (2008) Coupled three-phase inductors for interleaved inverter switching. IEEE Trans Magn 44(11):4119–4122CrossRef
25.
Zurück zum Zitat Salmon J, Ewanchuk J, Knight A (2009) PWM inverters using split-wound coupled inductors. IEEE Trans Ind Appl 45(6):2001–2009CrossRef Salmon J, Ewanchuk J, Knight A (2009) PWM inverters using split-wound coupled inductors. IEEE Trans Ind Appl 45(6):2001–2009CrossRef
26.
Zurück zum Zitat Mahfouz H (205) Control techniques for DC–DC converters with improved performance. Thesis M.Sc., Sohag University, 2015 Mahfouz H (205) Control techniques for DC–DC converters with improved performance. Thesis M.Sc., Sohag University, 2015
27.
Zurück zum Zitat Witulski AF (1995) Introduction to modeling of transformers and coupled inductors. IEEE Trans Power Electron 10(3):349–357CrossRef Witulski AF (1995) Introduction to modeling of transformers and coupled inductors. IEEE Trans Power Electron 10(3):349–357CrossRef
28.
Zurück zum Zitat Lee P-W, Lee Y-S, Cheng DKW, Liu X-C (2000) Steady-state analysis of an interleaved boost converter with coupled inductors. IEEE Trans Ind Electron 47(4):787–795CrossRef Lee P-W, Lee Y-S, Cheng DKW, Liu X-C (2000) Steady-state analysis of an interleaved boost converter with coupled inductors. IEEE Trans Ind Electron 47(4):787–795CrossRef
29.
Zurück zum Zitat Wen W, Lee Y (2004) A two-channel interleaved boost converter with reduced core loss and copper loss. In: Proceedings of IEEE power electronics specialists conference, pp 1003–1009 Wen W, Lee Y (2004) A two-channel interleaved boost converter with reduced core loss and copper loss. In: Proceedings of IEEE power electronics specialists conference, pp 1003–1009
30.
Zurück zum Zitat Sayed K, El-Zohri E, Naguib F, Mahfouz H (2015) Performance evaluations of interleaved ZCS boost DC–DC converters using quasi-resonant switch blocks for PV interface. IOSR J Electr Electron Eng (IOSR-JEEE) 10(4):105–113 Sayed K, El-Zohri E, Naguib F, Mahfouz H (2015) Performance evaluations of interleaved ZCS boost DC–DC converters using quasi-resonant switch blocks for PV interface. IOSR J Electr Electron Eng (IOSR-JEEE) 10(4):105–113
31.
Zurück zum Zitat Saleeb H, Sayed K, Kassem A, Mostafa R (2018) Power management strategy for battery electric vehicles. IET Electr Syst Transp 9(2):65–74CrossRef Saleeb H, Sayed K, Kassem A, Mostafa R (2018) Power management strategy for battery electric vehicles. IET Electr Syst Transp 9(2):65–74CrossRef
32.
Zurück zum Zitat Sayed K, El-Zohri EH, Mahfouz H (2017) Analysis and design for interleaved ZCS buck DC–DC converter with low switching losses. Int J Power Electron 8(3):210–231CrossRef Sayed K, El-Zohri EH, Mahfouz H (2017) Analysis and design for interleaved ZCS buck DC–DC converter with low switching losses. Int J Power Electron 8(3):210–231CrossRef
33.
Zurück zum Zitat Shum KE, Ashley CR (1996) A new full shunt switching unit for solar array using coupled-inductor boost converter. In: Proceedings of the 31st intersociety energy conversion engineering conference, IECEC 96., 11–16 Aug. vol 1, pp 617–622 Shum KE, Ashley CR (1996) A new full shunt switching unit for solar array using coupled-inductor boost converter. In: Proceedings of the 31st intersociety energy conversion engineering conference, IECEC 96., 11–16 Aug. vol 1, pp 617–622
34.
Zurück zum Zitat Veerachary M, Senjyu T, Uezato K (2003) Maximum power point tracking of coupled inductor interleaved boost converter supplied PV system. Proc IEE Electr Power Appl 150(1):71–80CrossRefMATH Veerachary M, Senjyu T, Uezato K (2003) Maximum power point tracking of coupled inductor interleaved boost converter supplied PV system. Proc IEE Electr Power Appl 150(1):71–80CrossRefMATH
35.
Zurück zum Zitat Zumel P, Garcia O, Cobos JA, Uceda J (2003) Magnetic integration for interleaved converters. In: Eighteenth annual IEEE applied power electronics conference and exposition, APEC ‘03, volume 2, 9–13 Feb. vol 2, pp 143–1149 Zumel P, Garcia O, Cobos JA, Uceda J (2003) Magnetic integration for interleaved converters. In: Eighteenth annual IEEE applied power electronics conference and exposition, APEC ‘03, volume 2, 9–13 Feb. vol 2, pp 143–1149
36.
Zurück zum Zitat Dahono PA, Riyadi S, Mudawari A, Haroen Y (1999) Output ripple analysis of multiphase DC–DC converters. In: Proceedings of the IEEE 1999 international conference on power electronics and drive systems, PEDS ‘99. volume 2, 27–29 July 1999. vol 2, pp 626–631 Dahono PA, Riyadi S, Mudawari A, Haroen Y (1999) Output ripple analysis of multiphase DC–DC converters. In: Proceedings of the IEEE 1999 international conference on power electronics and drive systems, PEDS ‘99. volume 2, 27–29 July 1999. vol 2, pp 626–631
37.
Zurück zum Zitat Karimi-Ghartemani Masoud (2014) Linear and pseudolinear enhanced phased-locked loop (EPLL) structures. IEEE Trans Ind Electron 61(3):1464–1474CrossRef Karimi-Ghartemani Masoud (2014) Linear and pseudolinear enhanced phased-locked loop (EPLL) structures. IEEE Trans Ind Electron 61(3):1464–1474CrossRef
38.
Zurück zum Zitat Ellabban O, Hegazy O, Van Mierlo J, Lataire P (2010) Dual loop digital control design and implementation of a DSP based high power boost converter in fuel cell electric vehicle. In: IEEE OPTIM Ellabban O, Hegazy O, Van Mierlo J, Lataire P (2010) Dual loop digital control design and implementation of a DSP based high power boost converter in fuel cell electric vehicle. In: IEEE OPTIM
39.
Zurück zum Zitat Wang Y, Yang L, Han F, Tu S, Zhang W (2017) A study of two multi-element resonant DC–DC topologies with loss distribution analyses. Energies 10:1400CrossRef Wang Y, Yang L, Han F, Tu S, Zhang W (2017) A study of two multi-element resonant DC–DC topologies with loss distribution analyses. Energies 10:1400CrossRef
40.
Zurück zum Zitat Ivanovic Z, Blanusa B, Knezic M (2011) Power loss model for efficiency improvement of the boost converter. In: Proceedings of the XXIII international symposium on information, communication and automation technologies (ICAT), Sarajevo, Bosnia and Herzegovina, 27–29 October 2011 Ivanovic Z, Blanusa B, Knezic M (2011) Power loss model for efficiency improvement of the boost converter. In: Proceedings of the XXIII international symposium on information, communication and automation technologies (ICAT), Sarajevo, Bosnia and Herzegovina, 27–29 October 2011
41.
Zurück zum Zitat Graovac D, Pürschel M, Kiep A (2006) MOSFET power losses calculation using the data-sheet parameters; application note; Infineon technologies AG: Neubiberg, Germany, 2006 Graovac D, Pürschel M, Kiep A (2006) MOSFET power losses calculation using the data-sheet parameters; application note; Infineon technologies AG: Neubiberg, Germany, 2006
42.
Zurück zum Zitat Khersonsky Y, Robinson M, Gutierrez D (xxxx) The HEXFRED™ Ultrafast Diode in Power Switching Circuits; Application Note; International Rectifier: El Segundo, CA, USA Khersonsky Y, Robinson M, Gutierrez D (xxxx) The HEXFRED™ Ultrafast Diode in Power Switching Circuits; Application Note; International Rectifier: El Segundo, CA, USA
43.
Zurück zum Zitat Sayed Khairy, Abdel-salam Mazen, Ahmed Adel, Ahmed Mahmoud (2012) A new high voltage gain dual boost DC–DC converter for pv power systems. J Electr Power Comp Syst 40(7):711–728CrossRef Sayed Khairy, Abdel-salam Mazen, Ahmed Adel, Ahmed Mahmoud (2012) A new high voltage gain dual boost DC–DC converter for pv power systems. J Electr Power Comp Syst 40(7):711–728CrossRef
44.
Zurück zum Zitat Barlow TJ, Latham S, McCrae IS et al (2009) Reference book of vehicle driving cycles for use in the measurements of road vehicles emissions. Technical Report, TRL Limited Barlow TJ, Latham S, McCrae IS et al (2009) Reference book of vehicle driving cycles for use in the measurements of road vehicles emissions. Technical Report, TRL Limited
45.
Zurück zum Zitat Prasad BS, Jain S, Agarwal V (2008) Universal single-stage grid-connected inverter. IEEE Trans Energy Convers 23:128–137CrossRef Prasad BS, Jain S, Agarwal V (2008) Universal single-stage grid-connected inverter. IEEE Trans Energy Convers 23:128–137CrossRef
46.
Zurück zum Zitat Sampaio L, De Brito M, Junior L, de Ae Melo G, Canesin C (2011) Single-phase current source-boost inverter for renewable energy sources. In: Proceedings of IEEE international symposium on industrial electronics (ISIE); pp 1118–1123 Sampaio L, De Brito M, Junior L, de Ae Melo G, Canesin C (2011) Single-phase current source-boost inverter for renewable energy sources. In: Proceedings of IEEE international symposium on industrial electronics (ISIE); pp 1118–1123
47.
Zurück zum Zitat Kaviani AK, Mirafzal B. A switching pattern for single-phase single-stage current source boost inverter. In: Proceedings of IEEE twenty-seventh annual applied power electronics conference and exposition (APEC), 2012; 2012. pp 2066–2071 Kaviani AK, Mirafzal B. A switching pattern for single-phase single-stage current source boost inverter. In: Proceedings of IEEE twenty-seventh annual applied power electronics conference and exposition (APEC), 2012; 2012. pp 2066–2071
48.
Zurück zum Zitat Adda R, Ray O, Mishra S, Joshi A. DSP based PWM control of switched boost inverter for DC nano grid applications. In: Proceedings of 38th annual conference on IEEE industrial electronics society: IEEE; IECon; 2012. pp 5285–5290 Adda R, Ray O, Mishra S, Joshi A. DSP based PWM control of switched boost inverter for DC nano grid applications. In: Proceedings of 38th annual conference on IEEE industrial electronics society: IEEE; IECon; 2012. pp 5285–5290
49.
Zurück zum Zitat Ravindranath A, Mishra SK, Joshi A (2013) Analysis and PWM control of switched boost inverter. IEEE Trans Ind Electron 60:5593–5602CrossRef Ravindranath A, Mishra SK, Joshi A (2013) Analysis and PWM control of switched boost inverter. IEEE Trans Ind Electron 60:5593–5602CrossRef
50.
Zurück zum Zitat Jia Y, Zhang S, Liu L, Wang S, Qie C (2016) Improved switching boost inverter. In: Proceedings of 11th conference on industrial electronics and applications (ICIEA), 2016 IEEE; 2016. pp 2468–71 Jia Y, Zhang S, Liu L, Wang S, Qie C (2016) Improved switching boost inverter. In: Proceedings of 11th conference on industrial electronics and applications (ICIEA), 2016 IEEE; 2016. pp 2468–71
51.
Zurück zum Zitat Garcia LS, De Freitas LC, Buiatti GM, Coelho EA, Farias VJ, Freitas LC. Modeling and control of a single-stage current source inverter with amplified sinusoidal output voltage. In: Proceedings of IEEE twenty-seventh annual applied power electronics conference and exposition (APEC), 2012: IEEE; 2012. pp 2024–31 Garcia LS, De Freitas LC, Buiatti GM, Coelho EA, Farias VJ, Freitas LC. Modeling and control of a single-stage current source inverter with amplified sinusoidal output voltage. In: Proceedings of IEEE twenty-seventh annual applied power electronics conference and exposition (APEC), 2012: IEEE; 2012. pp 2024–31
52.
Zurück zum Zitat Garcia LS, de Freitas LC, Avelar HJ, Costa NM, Junior JBV, Coelho EA, et al. Single-stage fuel-cell inverter with new control strategy. In: Proceedings of vehicle power and propulsion conference (VPPC); 2010. p. 1–6 Garcia LS, de Freitas LC, Avelar HJ, Costa NM, Junior JBV, Coelho EA, et al. Single-stage fuel-cell inverter with new control strategy. In: Proceedings of vehicle power and propulsion conference (VPPC); 2010. p. 1–6
53.
Zurück zum Zitat Babaei E, Asl ES, Babayi MH (2016) Steady-state and small-signal analysis of high voltage gain half-bridge switched boost inverter. IEEE Trans Ind Electron 63:3546–3553CrossRef Babaei E, Asl ES, Babayi MH (2016) Steady-state and small-signal analysis of high voltage gain half-bridge switched boost inverter. IEEE Trans Ind Electron 63:3546–3553CrossRef
54.
Zurück zum Zitat Shen M, Joseph A, Huang Y, Peng FZ, Qian Z. Design and development of a 50 kW Z-source inverter for fuel cell vehicles. In: Proceedings of CES/IEEE 5th international power electronics and motion control conference, 2006 IPEMC 2006: IEEE; 2006. pp 1–5 Shen M, Joseph A, Huang Y, Peng FZ, Qian Z. Design and development of a 50 kW Z-source inverter for fuel cell vehicles. In: Proceedings of CES/IEEE 5th international power electronics and motion control conference, 2006 IPEMC 2006: IEEE; 2006. pp 1–5
55.
Zurück zum Zitat Florescu A, Stocklosa O, Teodorescu M, Radoi C, Stoichescu D, Rosu S. The advantages, limitations, and disadvantages of Z-source inverter. In: Proceedings of IEEE international semiconductor conference (CAS), IEEE; 2010. pp 483–486 Florescu A, Stocklosa O, Teodorescu M, Radoi C, Stoichescu D, Rosu S. The advantages, limitations, and disadvantages of Z-source inverter. In: Proceedings of IEEE international semiconductor conference (CAS), IEEE; 2010. pp 483–486
56.
Zurück zum Zitat Suresh L, Kumar GN, Sudarsan M, Rajesh K (2013) Simulation of Z-source inverter using maximum boost control PWM technique. Int J Simul Syst 7:49–59 Suresh L, Kumar GN, Sudarsan M, Rajesh K (2013) Simulation of Z-source inverter using maximum boost control PWM technique. Int J Simul Syst 7:49–59
57.
Zurück zum Zitat Cortes D, Vázquez N, Alvarez-Gallegos J (2009) Dynamical sliding-mode control of the boost inverter. IEEE Trans Ind Electron 56:3467–3476CrossRef Cortes D, Vázquez N, Alvarez-Gallegos J (2009) Dynamical sliding-mode control of the boost inverter. IEEE Trans Ind Electron 56:3467–3476CrossRef
58.
Zurück zum Zitat Cáceres R, Barbi I (1995) A boost DC-AC converter: operation, analysis, control, and experimentation. In: Proceedings of the IEEE IECON 21st international conference on industrial electronics, control, and instrumentation; 1995. pp 546–51 Cáceres R, Barbi I (1995) A boost DC-AC converter: operation, analysis, control, and experimentation. In: Proceedings of the IEEE IECON 21st international conference on industrial electronics, control, and instrumentation; 1995. pp 546–51
59.
Zurück zum Zitat Caceres RO, Barbi I (1999) A boost DC-AC converter: analysis, design, and experimentation. IEEE Trans Power Electron 14:134–141CrossRef Caceres RO, Barbi I (1999) A boost DC-AC converter: analysis, design, and experimentation. IEEE Trans Power Electron 14:134–141CrossRef
60.
Zurück zum Zitat Caceres RO, Garcia WM, Camacho OE (1998) A buck-boost DC-AC converter: operation, analysis, and control. In: Proceedings of VI IEEE international power electronics congress; 1998. pp 126–131 Caceres RO, Garcia WM, Camacho OE (1998) A buck-boost DC-AC converter: operation, analysis, and control. In: Proceedings of VI IEEE international power electronics congress; 1998. pp 126–131
61.
Zurück zum Zitat Jang M, Ciobotaru M, Agelidis VG (2013) A single-phase grid-connected fuel cell system based on a boost-inverter. IEEE Trans Power Electron 28:279–288CrossRef Jang M, Ciobotaru M, Agelidis VG (2013) A single-phase grid-connected fuel cell system based on a boost-inverter. IEEE Trans Power Electron 28:279–288CrossRef
62.
Zurück zum Zitat Jang M, Agelidis VG (2011) A minimum power-processing-stage fuel-cell energy system based on a boost-inverter with a bidirectional backup battery storage. IEEE Trans Power Electron 26:1568–1577CrossRef Jang M, Agelidis VG (2011) A minimum power-processing-stage fuel-cell energy system based on a boost-inverter with a bidirectional backup battery storage. IEEE Trans Power Electron 26:1568–1577CrossRef
63.
Zurück zum Zitat Jang M, Agelidis VG (2010) Grid-interfaced fuel cell energy system based on a boost inverter with bi-directional back-up battery storage. In: Proceedings of IEEE energy conversion congress and exposition (ECCE); 2010. pp 4499–506 Jang M, Agelidis VG (2010) Grid-interfaced fuel cell energy system based on a boost inverter with bi-directional back-up battery storage. In: Proceedings of IEEE energy conversion congress and exposition (ECCE); 2010. pp 4499–506
64.
Zurück zum Zitat Jang M, Ciobotaru M, Agelidis VG (2012) A single-stage fuel cell energy system based on a buck-boost inverter with a backup energy storage unit. IEEE Trans Power Electron 27:2825–2834CrossRef Jang M, Ciobotaru M, Agelidis VG (2012) A single-stage fuel cell energy system based on a buck-boost inverter with a backup energy storage unit. IEEE Trans Power Electron 27:2825–2834CrossRef
65.
Zurück zum Zitat Jang M, Ciobotaru M, Agelidis VG. A single-stage three-phase fuel cell system based on a boost inverter with a battery back-up unit. In: Proceedings of twenty-seventh annual IEEE applied power electronics conference and exposition (APEC), IEEE; 2012. pp 2032–2037 Jang M, Ciobotaru M, Agelidis VG. A single-stage three-phase fuel cell system based on a boost inverter with a battery back-up unit. In: Proceedings of twenty-seventh annual IEEE applied power electronics conference and exposition (APEC), IEEE; 2012. pp 2032–2037
66.
Zurück zum Zitat Danyali S, Hosseini SH, Gharehpetian GB (2014) New extendable single-stage multi-input DC–DC/AC boost converter. IEEE Trans Power Electron 29:775–788CrossRef Danyali S, Hosseini SH, Gharehpetian GB (2014) New extendable single-stage multi-input DC–DC/AC boost converter. IEEE Trans Power Electron 29:775–788CrossRef
67.
Zurück zum Zitat Danyali S, Mozaffari Niapour SAK, Hosseini SH, Gharehpetian GB, Sabahi M (2015) New single-stage single-phase three-input DC-AC boost converter for stand-alone hybrid PV/FC/UC systems. Electr Power Syst Res 127:1–12CrossRef Danyali S, Mozaffari Niapour SAK, Hosseini SH, Gharehpetian GB, Sabahi M (2015) New single-stage single-phase three-input DC-AC boost converter for stand-alone hybrid PV/FC/UC systems. Electr Power Syst Res 127:1–12CrossRef
68.
Zurück zum Zitat Tang Y, Yao W, Blaabjerg F. A dual-mode operated boost inverter and its control strategy for ripple current reduction in single-phase uninterruptible power supplies. In: Proceedings of 9th IEEE international conference on power electronics and ECCE Asia (ICPE-ECCE Asia); 2015. pp 2227–2234 Tang Y, Yao W, Blaabjerg F. A dual-mode operated boost inverter and its control strategy for ripple current reduction in single-phase uninterruptible power supplies. In: Proceedings of 9th IEEE international conference on power electronics and ECCE Asia (ICPE-ECCE Asia); 2015. pp 2227–2234
69.
Zurück zum Zitat Moraka O, Barendse P, Khan MA (2016) Deadtime effect on the double loop control strategy for a boost inverter. IEEE Trans Ind Appl 53:319CrossRef Moraka O, Barendse P, Khan MA (2016) Deadtime effect on the double loop control strategy for a boost inverter. IEEE Trans Ind Appl 53:319CrossRef
70.
Zurück zum Zitat Wai R-J, Chen M-W, Liu Y-K (2015) Design of adaptive control and fuzzy neural network control for single-stage boost inverter. IEEE Trans Ind Electron 62:5434–5445CrossRef Wai R-J, Chen M-W, Liu Y-K (2015) Design of adaptive control and fuzzy neural network control for single-stage boost inverter. IEEE Trans Ind Electron 62:5434–5445CrossRef
71.
Zurück zum Zitat Wai R-J, Lin Y-F, Liu Y-K (2015) Design of adaptive fuzzy neural-network control for a single-stage boost inverter. IEEE Trans Power Electron 30:7282–7298CrossRef Wai R-J, Lin Y-F, Liu Y-K (2015) Design of adaptive fuzzy neural-network control for a single-stage boost inverter. IEEE Trans Power Electron 30:7282–7298CrossRef
72.
Zurück zum Zitat Jha K, Mishra S, Joshi A (2015) High-quality sine wave generation using a differential boost inverter at higher operating frequency. IEEE Trans Ind Appl 51:373–384CrossRef Jha K, Mishra S, Joshi A (2015) High-quality sine wave generation using a differential boost inverter at higher operating frequency. IEEE Trans Ind Appl 51:373–384CrossRef
73.
Zurück zum Zitat Abeywardana DBW, Hredzak B, Agelidis VG (2016) An input current feedback method to mitigate the DC-side low-frequency ripple current in a single-phase boost inverter. IEEE Trans Power Electron 31:4594–4603CrossRef Abeywardana DBW, Hredzak B, Agelidis VG (2016) An input current feedback method to mitigate the DC-side low-frequency ripple current in a single-phase boost inverter. IEEE Trans Power Electron 31:4594–4603CrossRef
74.
Zurück zum Zitat Abeywardana DBW, Hredzak B, Agelidis VG (2017) A fixed-frequency sliding mode controller for a boost-inverter-based battery-supercapacitor hybrid energy storage system. IEEE Trans Power Electron 32:668–680CrossRef Abeywardana DBW, Hredzak B, Agelidis VG (2017) A fixed-frequency sliding mode controller for a boost-inverter-based battery-supercapacitor hybrid energy storage system. IEEE Trans Power Electron 32:668–680CrossRef
75.
Zurück zum Zitat Caceres R, Barbi I (1996) Sliding mode controller for the boost inverter. In: Proceedings of IEEE international power electronics congress, 1996 CIEP’96. Mexico: IEEE; 1996. p. 247–52 Caceres R, Barbi I (1996) Sliding mode controller for the boost inverter. In: Proceedings of IEEE international power electronics congress, 1996 CIEP’96. Mexico: IEEE; 1996. p. 247–52
76.
Zurück zum Zitat Almazan J, Vazquez N, Hernandez C, Alvarez J, Arau J. A comparison between the buck, boost, and buck-boost inverters. In: Proceedings of IEEE VII international power electronics congress, 2000 CIEP IEEE; 2000. pp 341–346 Almazan J, Vazquez N, Hernandez C, Alvarez J, Arau J. A comparison between the buck, boost, and buck-boost inverters. In: Proceedings of IEEE VII international power electronics congress, 2000 CIEP IEEE; 2000. pp 341–346
77.
Zurück zum Zitat Caceres R, Rojas R, Camacho O (2000) Robust P.I.D. control of a buck-boost DC-AC converter. In: Proceedings of twenty-second international telecommunications energy conference, INTELEC: IEEE; pp 180–185 Caceres R, Rojas R, Camacho O (2000) Robust P.I.D. control of a buck-boost DC-AC converter. In: Proceedings of twenty-second international telecommunications energy conference, INTELEC: IEEE; pp 180–185
78.
Zurück zum Zitat Vázquez N, Cortes D, Hernandez C, Alvarez J, Arau J, Alvarez J (2003) A new nonlinear control strategy for the boost inverter. In: Proceedings of IEEE 34th annual on power electronics specialist conference, 2003 PESC’03 2003; pp 1403–1407 Vázquez N, Cortes D, Hernandez C, Alvarez J, Arau J, Alvarez J (2003) A new nonlinear control strategy for the boost inverter. In: Proceedings of IEEE 34th annual on power electronics specialist conference, 2003 PESC’03 2003; pp 1403–1407
79.
Zurück zum Zitat Liang T-J, Shyu J-L, Chen J-F. A novel DC/AC boost inverter. In: Proceedings of 37th intersociety energy conversion engineering conference, IECEC’02 2002: IEEE; 2004. pp 629–634 Liang T-J, Shyu J-L, Chen J-F. A novel DC/AC boost inverter. In: Proceedings of 37th intersociety energy conversion engineering conference, IECEC’02 2002: IEEE; 2004. pp 629–634
80.
Zurück zum Zitat Sanchis P, Ursúa A, Gubía E, Marroyo L (2005) Design and experimental operation of a control strategy for the buck-boost DC-AC inverter. IEE Proc-Electr Power Appl 152:660–668CrossRef Sanchis P, Ursúa A, Gubía E, Marroyo L (2005) Design and experimental operation of a control strategy for the buck-boost DC-AC inverter. IEE Proc-Electr Power Appl 152:660–668CrossRef
81.
Zurück zum Zitat Akhter R, Hoque A. Analysis of a PWM Boost Inverter for solar home application. In: Proceedings of world academy of science, engineering, and technology; 2006. pp 212–216 Akhter R, Hoque A. Analysis of a PWM Boost Inverter for solar home application. In: Proceedings of world academy of science, engineering, and technology; 2006. pp 212–216
82.
Zurück zum Zitat Zhao W, Lu D-C, Agelidis VG (2011) Current control of grid-connected boost inverter with zero steady-state error. Power Electron, IEEE Trans 26:2825–2834CrossRef Zhao W, Lu D-C, Agelidis VG (2011) Current control of grid-connected boost inverter with zero steady-state error. Power Electron, IEEE Trans 26:2825–2834CrossRef
83.
Zurück zum Zitat Jang M, Kim T, Agelidis VG. Design and implementation of a 200 kHz single-phase boost-inverter using silicon carbide semiconductors. In: 41st annual conference of the IEEE industrial electronics society, IECON 2015: IEEE; 2015. pp 002241–6 Jang M, Kim T, Agelidis VG. Design and implementation of a 200 kHz single-phase boost-inverter using silicon carbide semiconductors. In: 41st annual conference of the IEEE industrial electronics society, IECON 2015: IEEE; 2015. pp 002241–6
84.
Zurück zum Zitat Abeywardana DBW, Hredzak B, Agelidis VG (2016) A rule-based controller to mitigate DC-side second-order harmonic current in a single-phase boost inverter. IEEE Trans Power Electron 31:1665–1679CrossRef Abeywardana DBW, Hredzak B, Agelidis VG (2016) A rule-based controller to mitigate DC-side second-order harmonic current in a single-phase boost inverter. IEEE Trans Power Electron 31:1665–1679CrossRef
85.
Zurück zum Zitat Flores-Bahamonde F, Valderrama-Blavi H, Bosque-Moncusi JM, García G, Martínez-Salamero L (2016) Using the sliding-mode control approach for analysis and design of the boost inverter. IET Power Electron 9:1625–1634CrossRef Flores-Bahamonde F, Valderrama-Blavi H, Bosque-Moncusi JM, García G, Martínez-Salamero L (2016) Using the sliding-mode control approach for analysis and design of the boost inverter. IET Power Electron 9:1625–1634CrossRef
86.
Zurück zum Zitat Arunkumar G, Elangovan D, Patra JK, Tania H. A differential unipolar trailing edge modulated boost inverter for solar applications. In: Proceedings of the international conference on the computation of power, energy information, and communication (ICCPEIC), 2016: IEEE; 2016. pp 468–471 Arunkumar G, Elangovan D, Patra JK, Tania H. A differential unipolar trailing edge modulated boost inverter for solar applications. In: Proceedings of the international conference on the computation of power, energy information, and communication (ICCPEIC), 2016: IEEE; 2016. pp 468–471
87.
Zurück zum Zitat Purnama I, Chi P-C, Hsieh Y-C, Lin J-Y, Chiu H-J (2016) One cycle controlled grid-tied differential boost inverter. IET Power Electron 9:2216–2222CrossRef Purnama I, Chi P-C, Hsieh Y-C, Lin J-Y, Chiu H-J (2016) One cycle controlled grid-tied differential boost inverter. IET Power Electron 9:2216–2222CrossRef
88.
Zurück zum Zitat Zhu G-R, Tan S-C, Chen Y, Chi KT (2013) Mitigation of low-frequency current ripple in fuel-cell inverter systems through waveform control. IEEE Trans Power Electron 28:779–792CrossRef Zhu G-R, Tan S-C, Chen Y, Chi KT (2013) Mitigation of low-frequency current ripple in fuel-cell inverter systems through waveform control. IEEE Trans Power Electron 28:779–792CrossRef
89.
Zurück zum Zitat Zhu G-R, Xiao C-Y, Wang H-R, Chen W, Tan S-C. Dynamic characteristics of boost inverter with waveform control. In: Proceedings of IEEE twenty-ninth annual applied power electronics conference and exposition (APEC), 2014: IEEE; 2014. pp 1771–1775 Zhu G-R, Xiao C-Y, Wang H-R, Chen W, Tan S-C. Dynamic characteristics of boost inverter with waveform control. In: Proceedings of IEEE twenty-ninth annual applied power electronics conference and exposition (APEC), 2014: IEEE; 2014. pp 1771–1775
90.
Zurück zum Zitat Zhu G-R, Xiao C-Y, Wang H-R, Tan S-C (2016) Closed-loop waveform control of boost inverter. IET Power Electron 9:1808–1818CrossRef Zhu G-R, Xiao C-Y, Wang H-R, Tan S-C (2016) Closed-loop waveform control of boost inverter. IET Power Electron 9:1808–1818CrossRef
Metadaten
Titel
Control and analysis of bidirectional interleaved hybrid converter with coupled inductors for electric vehicle applications
verfasst von
Hedra Saleeb
Khairy Sayed
Ahmed Kassem
Ramadan Mostafa
Publikationsdatum
14.11.2019
Verlag
Springer Berlin Heidelberg
Erschienen in
Electrical Engineering / Ausgabe 1/2020
Print ISSN: 0948-7921
Elektronische ISSN: 1432-0487
DOI
https://doi.org/10.1007/s00202-019-00860-3

Weitere Artikel der Ausgabe 1/2020

Electrical Engineering 1/2020 Zur Ausgabe

Neuer Inhalt