Skip to main content

2017 | OriginalPaper | Buchkapitel

2. Control-Layer Optimization

verfasst von : Kai Hu, Krishnendu Chakrabarty, Tsung-Yi Ho

Erschienen in: Computer-Aided Design of Microfluidic Very Large Scale Integration (mVLSI) Biochips

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Recent advances in flow-based microfluidic biochips have enabled the emergence of lab-on-a-chip devices for bimolecular recognition and point-of-care disease diagnostics. However, the adoption of flow-based biochips is hampered today by the lack of computer-aided design tools. Manual design procedures not only delay product development but they also inhibit the exploitation of the design complexity that is possible with current fabrication techniques. In this chapter, we present the first practical problem formulation for automated control-layer design in flow-based microfluidic VLSI (mVLSI) biochips and propose a systematic approach for solving this problem. Our goal is to find an efficient routing solution for control-layer design with a minimum number of control pins. The pressure propagation delay, an intrinsic physical phenomenon in mVLSI biochips, is minimized in order to reduce the response time for valves, decrease the pattern setup time, and synchronize valve actuation. Two fabricated flow-based devices and six synthetic benchmarks are used to evaluate the proposed optimization method. Compared with manual control-layer design and a baseline approach, the proposed approach leads to fewer control pins, better timing behavior, and shorter channel length in the control layer.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat K. Hu, T.A. Dinh, T.-Y. Ho, K. Chakrabarty, Control-layer optimization for flow-based mvlsi microfluidic biochips, in Proceedings of the 2014 International Conference on Compilers, Architecture and Synthesis for Embedded Systems, ser. CASES ’14 (ACM, New York, NY, USA, 2014), pp. 16:1–16:10. http://doi.acm.org/10.1145/2656106.2656118 K. Hu, T.A. Dinh, T.-Y. Ho, K. Chakrabarty, Control-layer optimization for flow-based mvlsi microfluidic biochips, in Proceedings of the 2014 International Conference on Compilers, Architecture and Synthesis for Embedded Systems, ser. CASES ’14 (ACM, New York, NY, USA, 2014), pp. 16:1–16:10. http://​doi.​acm.​org/​10.​1145/​2656106.​2656118
2.
Zurück zum Zitat K. Hu, T.A. Dinh, T.-Y. Ho, K. Chakrabarty, Control-layer routing and control-pin minimization for flow-based microfluidic biochips. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 36(1), 55–68 (2017)CrossRef K. Hu, T.A. Dinh, T.-Y. Ho, K. Chakrabarty, Control-layer routing and control-pin minimization for flow-based microfluidic biochips. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 36(1), 55–68 (2017)CrossRef
3.
Zurück zum Zitat W.H. Minhass, P. Pop, J. Madsen, System-level modeling and synthesis of flow-based microfluidic biochips, in Proceedings International Conference on Compilers, Architectures and Synthesis for Embedded Systems (CASES). IEEE, 2011, pp. 225–233 W.H. Minhass, P. Pop, J. Madsen, System-level modeling and synthesis of flow-based microfluidic biochips, in Proceedings International Conference on Compilers, Architectures and Synthesis for Embedded Systems (CASES). IEEE, 2011, pp. 225–233
4.
Zurück zum Zitat W.H. Minhass, P. Pop, J. Madsen, F.S. Blaga, Architectural synthesis of flow-based microfluidic large-scale integration biochips, in Proceedings International Conference on Compilers, Architectures and Synthesis for Embedded Systems (CASES). ACM, 2012, pp. 181–190 W.H. Minhass, P. Pop, J. Madsen, F.S. Blaga, Architectural synthesis of flow-based microfluidic large-scale integration biochips, in Proceedings International Conference on Compilers, Architectures and Synthesis for Embedded Systems (CASES). ACM, 2012, pp. 181–190
5.
Zurück zum Zitat N. Amin, W. Thies, S. Amarasinghe, Computer-aided design for microfluidic chips based on multilayer soft lithography, in IEEE International Conference on Computer Design. IEEE, 2009, pp. 2–9 N. Amin, W. Thies, S. Amarasinghe, Computer-aided design for microfluidic chips based on multilayer soft lithography, in IEEE International Conference on Computer Design. IEEE, 2009, pp. 2–9
6.
Zurück zum Zitat J. Melin, S.R. Quake, Microfluidic large-scale integration: the evolution of design rules for biological automation. Annu. Rev. Biophys. Biomol. Struct. 36, 213–231 (2007)CrossRef J. Melin, S.R. Quake, Microfluidic large-scale integration: the evolution of design rules for biological automation. Annu. Rev. Biophys. Biomol. Struct. 36, 213–231 (2007)CrossRef
7.
Zurück zum Zitat P. Tabeling, Introduction to Microfluidics (Oxford University Press, 2010) P. Tabeling, Introduction to Microfluidics (Oxford University Press, 2010)
8.
Zurück zum Zitat D.C. Leslie, C.J. Easley, E. Seker, J.M. Karlinsey, M. Utz, M.R. Begley, J.P. Landers, Frequency-specific flow control in microfluidic circuits with passive elastomeric features. Nat. Phys. 5(3), 231–235 (2009)CrossRef D.C. Leslie, C.J. Easley, E. Seker, J.M. Karlinsey, M. Utz, M.R. Begley, J.P. Landers, Frequency-specific flow control in microfluidic circuits with passive elastomeric features. Nat. Phys. 5(3), 231–235 (2009)CrossRef
9.
Zurück zum Zitat M. Tanyeri, M. Ranka, N. Sittipolkul, C.M. Schroeder, A microfluidic-based hydrodynamic trap: design and implementation. Lab Chip 11(10), 1786–1794 (2011)CrossRef M. Tanyeri, M. Ranka, N. Sittipolkul, C.M. Schroeder, A microfluidic-based hydrodynamic trap: design and implementation. Lab Chip 11(10), 1786–1794 (2011)CrossRef
10.
Zurück zum Zitat Y. Lim, A. Kouzani, W. Duan, Lab-on-a-chip: a component view. Microsyst. Technol. 16(12), 1995–2015 (2010)CrossRef Y. Lim, A. Kouzani, W. Duan, Lab-on-a-chip: a component view. Microsyst. Technol. 16(12), 1995–2015 (2010)CrossRef
11.
Zurück zum Zitat T. Thorsen, S.J. Maerkl, S.R. Quake, Microfluidic large-scale integration. Science 298(5593), 580–584 (2002)CrossRef T. Thorsen, S.J. Maerkl, S.R. Quake, Microfluidic large-scale integration. Science 298(5593), 580–584 (2002)CrossRef
13.
Zurück zum Zitat W.H. Minhass, P. Pop, J. Madsen, T.-Y. Ho, Control synthesis for the flow-based microfluidic large-scale integration biochips, in Proceedings of the IEEE Asia and South Pacific Design Automation Conference. IEEE, 2013, pp. 205–212 W.H. Minhass, P. Pop, J. Madsen, T.-Y. Ho, Control synthesis for the flow-based microfluidic large-scale integration biochips, in Proceedings of the IEEE Asia and South Pacific Design Automation Conference. IEEE, 2013, pp. 205–212
14.
Zurück zum Zitat R. Gómez-Sjöberg, A.A. Leyrat, D.M. Pirone, C.S. Chen, S.R. Quake, Versatile, fully automated, microfluidic cell culture system. Anal. Chem. 79(22), 8557–8563 (2007)CrossRef R. Gómez-Sjöberg, A.A. Leyrat, D.M. Pirone, C.S. Chen, S.R. Quake, Versatile, fully automated, microfluidic cell culture system. Anal. Chem. 79(22), 8557–8563 (2007)CrossRef
15.
Zurück zum Zitat T. Xu, K. Chakrabarty, Broadcast electrode-addressing for pin-constrained multi-functional digital microfluidic biochips, in Proceedings ACM/IEEE Design Automation Conference. ACM, 2008, pp. 173–178 T. Xu, K. Chakrabarty, Broadcast electrode-addressing for pin-constrained multi-functional digital microfluidic biochips, in Proceedings ACM/IEEE Design Automation Conference. ACM, 2008, pp. 173–178
16.
Zurück zum Zitat J.L. Gross, J. Yellen, Graph Theory and its Applications (CRC Press, 2005) J.L. Gross, J. Yellen, Graph Theory and its Applications (CRC Press, 2005)
17.
Zurück zum Zitat C.Y. Lee, An algorithm for path connections and its applications. IEEE Trans. Electron. Comput. 3, 346–365 (1961)MathSciNetCrossRef C.Y. Lee, An algorithm for path connections and its applications. IEEE Trans. Electron. Comput. 3, 346–365 (1961)MathSciNetCrossRef
19.
Zurück zum Zitat Y. Hu, Z. Feng, T. Jing, X. Hong, Y. Yang, G. Yu, X. Hu, G. Yan, Forst: A 3-step heuristic for obstacle-avoiding rectilinear steiner minimal tree construction. J. Inf. Comput. Sci. 1(3), 107–116 (2004) Y. Hu, Z. Feng, T. Jing, X. Hong, Y. Yang, G. Yu, X. Hu, G. Yan, Forst: A 3-step heuristic for obstacle-avoiding rectilinear steiner minimal tree construction. J. Inf. Comput. Sci. 1(3), 107–116 (2004)
20.
Zurück zum Zitat T.H. Cormen, Introduction to Algorithms (MIT Press, 2009) T.H. Cormen, Introduction to Algorithms (MIT Press, 2009)
21.
Zurück zum Zitat C.-W. Lin, S.-Y. Chen, C.-F. Li, Y.-W. Chang, C.-L. Yang, Obstacle-avoiding rectilinear steiner tree construction based on spanning graphs. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 27(4), 643–653 (2008)CrossRef C.-W. Lin, S.-Y. Chen, C.-F. Li, Y.-W. Chang, C.-L. Yang, Obstacle-avoiding rectilinear steiner tree construction based on spanning graphs. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 27(4), 643–653 (2008)CrossRef
22.
Zurück zum Zitat A.R. Wu, T.L. Kawahara, N.A. Rapicavoli, J. van Riggelen, E.H. Shroff, L. Xu, D.W. Felsher, H.Y. Chang, S.R. Quake, High throughput automated chromatin immunoprecipitation as a platform for drug screening and antibody validation. Lab Chip 12(12), 2190–2198 (2012)CrossRef A.R. Wu, T.L. Kawahara, N.A. Rapicavoli, J. van Riggelen, E.H. Shroff, L. Xu, D.W. Felsher, H.Y. Chang, S.R. Quake, High throughput automated chromatin immunoprecipitation as a platform for drug screening and antibody validation. Lab Chip 12(12), 2190–2198 (2012)CrossRef
23.
Zurück zum Zitat A.R. Wu, J.B. Hiatt, R. Lu, J.L. Attema, N.A. Lobo, I.L. Weissman, M.F. Clarke, S.R. Quake, Automated microfluidic chromatin immunoprecipitation from 2,000 cells. Lab Chip 9(10), 1365–1370 (2009)CrossRef A.R. Wu, J.B. Hiatt, R. Lu, J.L. Attema, N.A. Lobo, I.L. Weissman, M.F. Clarke, S.R. Quake, Automated microfluidic chromatin immunoprecipitation from 2,000 cells. Lab Chip 9(10), 1365–1370 (2009)CrossRef
Metadaten
Titel
Control-Layer Optimization
verfasst von
Kai Hu
Krishnendu Chakrabarty
Tsung-Yi Ho
Copyright-Jahr
2017
DOI
https://doi.org/10.1007/978-3-319-56255-1_2

Neuer Inhalt