Skip to main content

2022 | OriginalPaper | Buchkapitel

Control of Auto-ignitive Wave Propagation Modes from Hot Spots by Mixture Tailoring in Shockless Explosion Combustion

verfasst von : Lisa Zander, Johann Vinkeloe, Neda Djordjevic

Erschienen in: Active Flow and Combustion Control 2021

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Shockless Explosion Combustion is a novel combustion concept that achieves pressure gain combustion by quasi-homogeneous auto-ignition of the fuel/air mixture. Shockless Explosion Combustion is, like other combustion concepts based on auto-ignition, prone to premature ignition and detonation formation in the presence of reactivity gradients, so called hot spots. Two measures to inhibit detonation formation and to achieve quasi-homogeneous auto-ignition, dilution and fuel blending, are investigated by means of zero-dimensional simulations of generic hot spots. Experimental ignition delay times measured in a high pressure shock tube are used to select suitable chemical-kinetic models for the numerical investigation and the calculation of temperature sensitivities of ignition delay times. The main focus of this investigation are the two non-dimensional regime parameters \(\xi \) and \(\varepsilon \), as they enable characterization of the mode of auto-ignitive wave propagation from hot spots. \(\xi \) is the ratio between the speed of sound and the auto-ignitive wave propagation velocity and \(\varepsilon \) describes the ratio between the time a pressure wave travels through the hot spot and the excitation time. Dilution of the combustion mixture with steam and CO\(_2\) aims at extending excitation times and therefore decreasing the parameter \(\varepsilon \). Fuel blending of Dimethyl ether with hydrogen or methane aims at reducing the temperature sensitivity of ignition delay time and low values of \(\xi \). It is demonstrated that both measures are effective at mitigating detonation development while maintaining quasi-homogeneous auto-ignition in presence of hot spots.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Bobusch, B.C., Berndt, P., Paschereit, C.O., Klein, R.: Shockless explosion combustion: an innovative way of efficient constant volume combustion in gas turbines. Combust. Sci. Technol. 186(10–11), 1680–1689 (2014)CrossRef Bobusch, B.C., Berndt, P., Paschereit, C.O., Klein, R.: Shockless explosion combustion: an innovative way of efficient constant volume combustion in gas turbines. Combust. Sci. Technol. 186(10–11), 1680–1689 (2014)CrossRef
2.
Zurück zum Zitat Rähse, T.S., Paschereit, C.O., Stathopoulos, P., Berndt, P., Klein, R.: Gas dynamic simulation of shockless explosion combustion for gas turbine power cycles. In: Volume 3: Coal, Biomass and Alternative Fuels; Cycle Innovations; Electric Power; Industrial and Cogeneration Applications; Organic Rankine Cycle Power Systems of Turbo Expo: Power for Land, Sea, and Air, June 2017. V003T06A005 Rähse, T.S., Paschereit, C.O., Stathopoulos, P., Berndt, P., Klein, R.: Gas dynamic simulation of shockless explosion combustion for gas turbine power cycles. In: Volume 3: Coal, Biomass and Alternative Fuels; Cycle Innovations; Electric Power; Industrial and Cogeneration Applications; Organic Rankine Cycle Power Systems of Turbo Expo: Power for Land, Sea, and Air, June 2017. V003T06A005
3.
Zurück zum Zitat Rähse, T.S., Stathopoulos, P., Schäpel, J.S., Arnold, F., King, R.: On the influence of fuel stratification and its control on the efficiency of the shockless explosion combustion cycle. J. Eng. Gas Turbines Power 141(1) (2019) Rähse, T.S., Stathopoulos, P., Schäpel, J.S., Arnold, F., King, R.: On the influence of fuel stratification and its control on the efficiency of the shockless explosion combustion cycle. J. Eng. Gas Turbines Power 141(1) (2019)
4.
5.
Zurück zum Zitat Yücel, F.C., Habicht, F., Arnold, F., King, R., Bohon, M., Paschereit, C.O.: Controlled autoignition in stratified mixtures. Combust. Flame 232, 111533 (2021)CrossRef Yücel, F.C., Habicht, F., Arnold, F., King, R., Bohon, M., Paschereit, C.O.: Controlled autoignition in stratified mixtures. Combust. Flame 232, 111533 (2021)CrossRef
6.
Zurück zum Zitat Yücel, F.C., Habicht, F., Bohon, M., Paschereit, C.O.: Autoignition in stratified mixtures for pressure gain combustion. In: Proceedings of the Combustion Institute, October 2020 Yücel, F.C., Habicht, F., Bohon, M., Paschereit, C.O.: Autoignition in stratified mixtures for pressure gain combustion. In: Proceedings of the Combustion Institute, October 2020
7.
Zurück zum Zitat Sheppard, C.G.W., Tolegano, S., Woolley, R.: On the nature of autoignition leading to knock in HCCI engines. SAE Trans. 111, 1828–1840 (2002) Sheppard, C.G.W., Tolegano, S., Woolley, R.: On the nature of autoignition leading to knock in HCCI engines. SAE Trans. 111, 1828–1840 (2002)
8.
Zurück zum Zitat Lee, J.H., Knystautas, R., Yoshikawa, N.: Photochemical initiation of gaseous detonations. Acta Astronaut. 5, 971–982 (1978)CrossRef Lee, J.H., Knystautas, R., Yoshikawa, N.: Photochemical initiation of gaseous detonations. Acta Astronaut. 5, 971–982 (1978)CrossRef
9.
Zurück zum Zitat Zeldovich, Y.B., Librovich, V.B., Makhviladze, G.M., Sivashinsky, G.I.: On the development of detonation in a nonuniformly heated gas. Astronaut. Acta 15, 313–321 (1970) Zeldovich, Y.B., Librovich, V.B., Makhviladze, G.M., Sivashinsky, G.I.: On the development of detonation in a nonuniformly heated gas. Astronaut. Acta 15, 313–321 (1970)
10.
Zurück zum Zitat Zeldovich, Y.B.: Regime classification of an exothermic reaction with nonuniform initial conditions. Combust. Flame 39(2), 211–214 (1980)CrossRef Zeldovich, Y.B.: Regime classification of an exothermic reaction with nonuniform initial conditions. Combust. Flame 39(2), 211–214 (1980)CrossRef
11.
Zurück zum Zitat Gu, X.J., Emerson, D.R., Bradley, D.: Modes of reaction front propagation from hot spots. Combust. Flame 133(1–2), 63–74 (2003)CrossRef Gu, X.J., Emerson, D.R., Bradley, D.: Modes of reaction front propagation from hot spots. Combust. Flame 133(1–2), 63–74 (2003)CrossRef
12.
Zurück zum Zitat Berndt, P.: Mathematical modeling of the shockless explosion combustion. Ph.D. thesis, Freie Universität Berlin, Berlin (2016) Berndt, P.: Mathematical modeling of the shockless explosion combustion. Ph.D. thesis, Freie Universität Berlin, Berlin (2016)
13.
Zurück zum Zitat Berndt, P., Klein, R.: Modeling the kinetics of the shockless explosion combustion. Combust. Flame 175, 16–26 (2017)CrossRef Berndt, P., Klein, R.: Modeling the kinetics of the shockless explosion combustion. Combust. Flame 175, 16–26 (2017)CrossRef
15.
Zurück zum Zitat Quintens, H., Strozzi, C., Zitoun, R., Bellenoue, M.: Experimental investigation of end-gas autoignition-to-detonation transition for an N-Decane/O2/Ar mixture. Shock Waves 30(3), 287–303 (2020)CrossRef Quintens, H., Strozzi, C., Zitoun, R., Bellenoue, M.: Experimental investigation of end-gas autoignition-to-detonation transition for an N-Decane/O2/Ar mixture. Shock Waves 30(3), 287–303 (2020)CrossRef
16.
Zurück zum Zitat Bates, L., Bradley, D., Paczko, G., Peters, N.: Engine hot spots: modes of auto-ignition and reaction propagation. Combust. Flame 166, 80–85 (2016)CrossRef Bates, L., Bradley, D., Paczko, G., Peters, N.: Engine hot spots: modes of auto-ignition and reaction propagation. Combust. Flame 166, 80–85 (2016)CrossRef
17.
Zurück zum Zitat Gorbatenko, I., Bradley, D., Tomlin, A.S.: Auto-ignition and detonation of n-butanol and toluene reference fuel blends (TRF). Combust. Flame 229, 111378 (2021)CrossRef Gorbatenko, I., Bradley, D., Tomlin, A.S.: Auto-ignition and detonation of n-butanol and toluene reference fuel blends (TRF). Combust. Flame 229, 111378 (2021)CrossRef
18.
Zurück zum Zitat Dai, P., Chen, Z., Gan, X.: Autoignition and detonation development induced by a hot spot in fuel-lean and CO2 diluted n-heptane/air mixtures. Combust. Flame 201, 208–214 (2019)CrossRef Dai, P., Chen, Z., Gan, X.: Autoignition and detonation development induced by a hot spot in fuel-lean and CO2 diluted n-heptane/air mixtures. Combust. Flame 201, 208–214 (2019)CrossRef
20.
Zurück zum Zitat Vinkeloe, J., Zander, L., Szeponik, M., Djordjevic, N.: Tailoring the temperature sensitivity of ignition delay times in hot spots using fuel blends of dimethyl ether, Methane, and Hydrogen. Energy Fuels 34(2), 2246–2259 (2020)CrossRef Vinkeloe, J., Zander, L., Szeponik, M., Djordjevic, N.: Tailoring the temperature sensitivity of ignition delay times in hot spots using fuel blends of dimethyl ether, Methane, and Hydrogen. Energy Fuels 34(2), 2246–2259 (2020)CrossRef
21.
Zurück zum Zitat Arcoumanis, C., Bae, C., Crookes, R., Kinoshita, E.: The potential of di-methyl ether (DME) as an alternative fuel for compression-ignition engines: a review. Fuel 87(7), 1014–1030 (2008)CrossRef Arcoumanis, C., Bae, C., Crookes, R., Kinoshita, E.: The potential of di-methyl ether (DME) as an alternative fuel for compression-ignition engines: a review. Fuel 87(7), 1014–1030 (2008)CrossRef
22.
Zurück zum Zitat Djordjevic, N., Rekus, M., Vinkeloe, J., Zander, L.: Shock tube and kinetic study on the effects of CO\(_{2}\) on dimethyl ether autoignition at high pressures. Energy Fuels 33(10), 10197–10208 (2019)CrossRef Djordjevic, N., Rekus, M., Vinkeloe, J., Zander, L.: Shock tube and kinetic study on the effects of CO\(_{2}\) on dimethyl ether autoignition at high pressures. Energy Fuels 33(10), 10197–10208 (2019)CrossRef
23.
Zurück zum Zitat Zander, L., Vinkeloe, J., Djordjevic, N.: Ignition delay and chemical- kinetic modeling of undiluted mixtures in a high-pressure shock tube: nonideal effects and comparative uncertainty analysis. Int. J. Chem. Kinet. 53(5), 611–637 (2021)CrossRef Zander, L., Vinkeloe, J., Djordjevic, N.: Ignition delay and chemical- kinetic modeling of undiluted mixtures in a high-pressure shock tube: nonideal effects and comparative uncertainty analysis. Int. J. Chem. Kinet. 53(5), 611–637 (2021)CrossRef
24.
Zurück zum Zitat Goodwin, D.G., Speth, R.L., Moffat, H.K., Weber, B.W.: Cantera: an object-oriented software toolkit for chemical kinetics, thermodynamics, and transport processes (2021). Version 2.5.1 Goodwin, D.G., Speth, R.L., Moffat, H.K., Weber, B.W.: Cantera: an object-oriented software toolkit for chemical kinetics, thermodynamics, and transport processes (2021). Version 2.5.1
25.
Zurück zum Zitat Dai, P., Qi, C., Chen, Z.: Effects of initial temperature on autoignition and detonation development in dimethyl ether/air mixtures with temperature gradient. Proc. Combust. Inst. 36(3), 3643–3650 (2017)CrossRef Dai, P., Qi, C., Chen, Z.: Effects of initial temperature on autoignition and detonation development in dimethyl ether/air mixtures with temperature gradient. Proc. Combust. Inst. 36(3), 3643–3650 (2017)CrossRef
26.
Zurück zum Zitat Jingyi, S., Dai, P., Chen, Z.: Detonation development from a hot spot in methane/air mixtures: effects of kinetic models. Int. J. Engine Res. 22, 2597–2606 (2020) Jingyi, S., Dai, P., Chen, Z.: Detonation development from a hot spot in methane/air mixtures: effects of kinetic models. Int. J. Engine Res. 22, 2597–2606 (2020)
27.
Zurück zum Zitat Gao, Y., Dai, P., Chen, Z.: Numerical studies on autoignition and detonation development from a hot spot in hydrogen/air mixtures. Combust. Theor. Model. 24(2), 245–261 (2020)MathSciNetCrossRef Gao, Y., Dai, P., Chen, Z.: Numerical studies on autoignition and detonation development from a hot spot in hydrogen/air mixtures. Combust. Theor. Model. 24(2), 245–261 (2020)MathSciNetCrossRef
28.
Zurück zum Zitat Bradley, D., Kalghatgi, G.T.: Influence of autoignition delay time characteristics of different fuels on pressure waves and knock in reciprocating engines. Combust. Flame 156(12), 2307–2318 (2009)CrossRef Bradley, D., Kalghatgi, G.T.: Influence of autoignition delay time characteristics of different fuels on pressure waves and knock in reciprocating engines. Combust. Flame 156(12), 2307–2318 (2009)CrossRef
29.
Zurück zum Zitat Burke, S.M., et al.: An experimental and modeling study of propene oxidation Part 1: speciation measurements in jet-stirred and flow reactors. Combust. Flame 161(11), 2765–2784 (2014)CrossRef Burke, S.M., et al.: An experimental and modeling study of propene oxidation Part 1: speciation measurements in jet-stirred and flow reactors. Combust. Flame 161(11), 2765–2784 (2014)CrossRef
30.
Zurück zum Zitat Burke, S.M., et al.: An experimental and modeling study of propene oxidation Part 2: ignition delay time and flame speed measurements. Combust. Flame 162(2), 296–314 (2015)CrossRef Burke, S.M., et al.: An experimental and modeling study of propene oxidation Part 2: ignition delay time and flame speed measurements. Combust. Flame 162(2), 296–314 (2015)CrossRef
31.
Zurück zum Zitat Burke, U., Metcalfe, W.K., Burke, S.M., Heufer, K.A., Dagaut, P., Curran, H.J.: A detailed chemical kinetic modeling, ignition delay time and jet-stirred reactor study of methanol oxidation. Combust. Flame 165, 125–136 (2016)CrossRef Burke, U., Metcalfe, W.K., Burke, S.M., Heufer, K.A., Dagaut, P., Curran, H.J.: A detailed chemical kinetic modeling, ignition delay time and jet-stirred reactor study of methanol oxidation. Combust. Flame 165, 125–136 (2016)CrossRef
32.
Zurück zum Zitat Kéromnès, A., et al.: An experimental and detailed chemical kinetic modeling study of hydrogen and syngas mixture oxidation at elevated pressures. Combust. Flame 160(6), 995–1011 (2013)CrossRef Kéromnès, A., et al.: An experimental and detailed chemical kinetic modeling study of hydrogen and syngas mixture oxidation at elevated pressures. Combust. Flame 160(6), 995–1011 (2013)CrossRef
33.
Zurück zum Zitat Li, Y., Zhou, C.-W., Somers, K.P., Zhang, K., Curran, H.J.: The oxidation of 2-butene: a high pressure ignition delay, kinetic modeling study and reactivity comparison with isobutene and 1-butene. Proc. Combust. Inst. 36(1), 403–411 (2017)CrossRef Li, Y., Zhou, C.-W., Somers, K.P., Zhang, K., Curran, H.J.: The oxidation of 2-butene: a high pressure ignition delay, kinetic modeling study and reactivity comparison with isobutene and 1-butene. Proc. Combust. Inst. 36(1), 403–411 (2017)CrossRef
34.
Zurück zum Zitat Metcalfe, W.K., Burke, S.M., Ahmed, S.S., Curran, H.J.: A hierarchical and comparative kinetic modeling study of C1–C2 hydrocarbon and oxygenated fuels. Int. J. Chem. Kinet. 45(10), 638–675 (2013)CrossRef Metcalfe, W.K., Burke, S.M., Ahmed, S.S., Curran, H.J.: A hierarchical and comparative kinetic modeling study of C1–C2 hydrocarbon and oxygenated fuels. Int. J. Chem. Kinet. 45(10), 638–675 (2013)CrossRef
35.
Zurück zum Zitat Zhou, C.-W., et al.: A comprehensive experimental and modeling study of isobutene oxidation. Combust. Flame 167, 353–379 (2016)CrossRef Zhou, C.-W., et al.: A comprehensive experimental and modeling study of isobutene oxidation. Combust. Flame 167, 353–379 (2016)CrossRef
36.
Zurück zum Zitat Zhao, Z., Chaos, M., Kazakov, A., Dryer, F.L.: Thermal decomposition reaction and a comprehensive kinetic model of dimethyl ether. Int. J. Chem. Kinet. 40(1), 1–18 (2008)CrossRef Zhao, Z., Chaos, M., Kazakov, A., Dryer, F.L.: Thermal decomposition reaction and a comprehensive kinetic model of dimethyl ether. Int. J. Chem. Kinet. 40(1), 1–18 (2008)CrossRef
37.
Zurück zum Zitat Dai, P., Chen, Z., Chen, S., Ju, Y.: Numerical experiments on reaction front propagation in n-heptane/air mixture with temperature gradient. Proc. Combust. Inst. 35(3), 3045–3052 (2015)CrossRef Dai, P., Chen, Z., Chen, S., Ju, Y.: Numerical experiments on reaction front propagation in n-heptane/air mixture with temperature gradient. Proc. Combust. Inst. 35(3), 3045–3052 (2015)CrossRef
38.
Zurück zum Zitat Zhou, C.-W., et al.: An experimental and chemical kinetic modeling study of 1,3-butadiene combustion: ignition delay time and laminar flame speed measurements. Combust. Flame 197, 423–438 (2018)CrossRef Zhou, C.-W., et al.: An experimental and chemical kinetic modeling study of 1,3-butadiene combustion: ignition delay time and laminar flame speed measurements. Combust. Flame 197, 423–438 (2018)CrossRef
Metadaten
Titel
Control of Auto-ignitive Wave Propagation Modes from Hot Spots by Mixture Tailoring in Shockless Explosion Combustion
verfasst von
Lisa Zander
Johann Vinkeloe
Neda Djordjevic
Copyright-Jahr
2022
DOI
https://doi.org/10.1007/978-3-030-90727-3_2

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.