Skip to main content
Erschienen in:
Buchtitelbild

2024 | OriginalPaper | Buchkapitel

Control Over Morphological Characteristics of the Pt/C Catalysts Obtained by the Liquid-Phase Synthesis

verfasst von : Yu. Bayan, K. Paperzh, M. Danilenko, D. Alekseenko, Yu. Pankova, I. Pankov, A. Alekseenko

Erschienen in: Physics and Mechanics of New Materials and Their Applications

Verlag: Springer Nature Switzerland

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

One of the key components of low-temperature fuel cells with a proton-exchange membrane is an electrocatalyst contained in the porous electrodes. The most widespread synthesis methods are the liquid-phase ones that allow controlling the microstructure of the catalyst and, thus, its functional parameters. We have investigated the influence of various conditions of the liquid-phase synthesis on the morphological and electrochemical characteristics of the resulting platinum–carbon catalysts. An increase in the synthesis temperature has been established to allow for the narrowing of the size dispersion and the decrease in the average size of platinum nanoparticles. It has been found that the presence of a carbon support during the synthesis makes it possible to enhance the uniformity of the Pt NPs’ distribution over the surface of the support and decreasing the average particle size. As a result, the values of the active surface area grow almost 1.2–2 times compared to the homogeneous synthesis, during which the resulting colloid of platinum particles is deposited on the carbon support after the reduction. When using the molar ratio of hydroxyl groups/platinum in the range from 5 to 20 during the synthesis, the resulting Pt/C catalysts are characterized by an active surface area of more than 85 m2·g−1Pt. The possibility of scaling the synthesis method to obtain at least 1 g of the catalyst, which is not inferior in functional parameters to its commercial analog both before stress testing and after its completion, is also shown.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat O’Hayre, R.P., et al.: Fuel Cell Fundamentals, 2nd edn. Wiley, New York (2009) O’Hayre, R.P., et al.: Fuel Cell Fundamentals, 2nd edn. Wiley, New York (2009)
2.
Zurück zum Zitat Yaroslavtsev, A.B., et al.: Nanostructured materials for low-temperature fuel cells. Russ. Chem. Rev. 81(3), 191–220 (2012)CrossRef Yaroslavtsev, A.B., et al.: Nanostructured materials for low-temperature fuel cells. Russ. Chem. Rev. 81(3), 191–220 (2012)CrossRef
3.
Zurück zum Zitat Sui, S., et al.: A comprehensive review of Pt electrocatalysts for the oxygen reduction reaction: nanostructure, activity, mechanism and carbon support in PEM fuel cells. J. Mater. Chem. A 5(5), 1808–1825 (2017)CrossRef Sui, S., et al.: A comprehensive review of Pt electrocatalysts for the oxygen reduction reaction: nanostructure, activity, mechanism and carbon support in PEM fuel cells. J. Mater. Chem. A 5(5), 1808–1825 (2017)CrossRef
4.
Zurück zum Zitat Thompsett, D.: Catalysts for the proton exchange membrane fuel cell. In: Hoogers, G. (ed.) Fuel Cell Technology Handbook. Boca Raton (2003) Thompsett, D.: Catalysts for the proton exchange membrane fuel cell. In: Hoogers, G. (ed.) Fuel Cell Technology Handbook. Boca Raton (2003)
5.
Zurück zum Zitat Zhang, J., et al.: Preparation and characterization of Pt/C catalysts for PEMFC cathode: effect of different reduction methods. React. Kinet. Catal. Lett. 83(2), 229–236 (2004)CrossRef Zhang, J., et al.: Preparation and characterization of Pt/C catalysts for PEMFC cathode: effect of different reduction methods. React. Kinet. Catal. Lett. 83(2), 229–236 (2004)CrossRef
6.
Zurück zum Zitat Holton, O.T., et al.: The role of platinum in proton exchange membrane fuel cells. Platin. Met. Rev. 57(4), 259–271 (2013)CrossRef Holton, O.T., et al.: The role of platinum in proton exchange membrane fuel cells. Platin. Met. Rev. 57(4), 259–271 (2013)CrossRef
7.
Zurück zum Zitat Leontyev, I.N., et al.: Catalytic activity of carbon-supported Pt nanoelectrocatalysts. Why reducing the size of Pt nanoparticles is not always beneficial. J. Phys. Chem. 115(13), 5429–5434 (2011) Leontyev, I.N., et al.: Catalytic activity of carbon-supported Pt nanoelectrocatalysts. Why reducing the size of Pt nanoparticles is not always beneficial. J. Phys. Chem. 115(13), 5429–5434 (2011)
8.
Zurück zum Zitat Mayrhofer, K.J.J., et al.: The impact of geometric and surface electronic properties of Pt-catalysts on the particle size effect in electrocatalysis. J. Phys. Chem. B 109(30), 14433–14440 (2005)CrossRefPubMed Mayrhofer, K.J.J., et al.: The impact of geometric and surface electronic properties of Pt-catalysts on the particle size effect in electrocatalysis. J. Phys. Chem. B 109(30), 14433–14440 (2005)CrossRefPubMed
9.
Zurück zum Zitat Schröder, J., et al.: Anion dependent particle size control of platinum nanoparticles synthesized in ethylene glycol. Nanomaterials 11(8), 2092 (2021)CrossRefPubMedPubMedCentral Schröder, J., et al.: Anion dependent particle size control of platinum nanoparticles synthesized in ethylene glycol. Nanomaterials 11(8), 2092 (2021)CrossRefPubMedPubMedCentral
10.
Zurück zum Zitat Kim, H., et al.: Preparation of platinum-based electrode catalysts for low temperature fuel cell. Catal. Today 87(1–4), 237–245 (2003)CrossRef Kim, H., et al.: Preparation of platinum-based electrode catalysts for low temperature fuel cell. Catal. Today 87(1–4), 237–245 (2003)CrossRef
11.
Zurück zum Zitat Quinson, J., et al.: From platinum atoms in molecules to colloidal nanoparticles: a review on reduction, nucleation and growth mechanisms. Adv. Coll. Interface. Sci. 268, 102300 (2020)CrossRef Quinson, J., et al.: From platinum atoms in molecules to colloidal nanoparticles: a review on reduction, nucleation and growth mechanisms. Adv. Coll. Interface. Sci. 268, 102300 (2020)CrossRef
12.
Zurück zum Zitat Danilenko, M.V., et al.: The effect of a gas atmosphere on the formation of colloidal platinum nanoparticles in liquid phase synthesis. Colloid Polym. Sci. 301(5), 433–443 (2023)CrossRef Danilenko, M.V., et al.: The effect of a gas atmosphere on the formation of colloidal platinum nanoparticles in liquid phase synthesis. Colloid Polym. Sci. 301(5), 433–443 (2023)CrossRef
13.
Zurück zum Zitat Danilenko, M.V., et al.: CO effect on the dynamics of platinum nucleation/growth under the liquid-phase synthesis of Pt/C electrocatalysts. J. Electrochem. Soc. 169(9), 092501 (2022)CrossRef Danilenko, M.V., et al.: CO effect on the dynamics of platinum nucleation/growth under the liquid-phase synthesis of Pt/C electrocatalysts. J. Electrochem. Soc. 169(9), 092501 (2022)CrossRef
14.
Zurück zum Zitat Paperzh, K.O., et al.: UV radiation effect on the microstructure and performance of electrocatalysts based on small Pt nanoparticles synthesized in the liquid phase. Colloids Interface Sci. Commun. 45, 100517 (2021)CrossRef Paperzh, K.O., et al.: UV radiation effect on the microstructure and performance of electrocatalysts based on small Pt nanoparticles synthesized in the liquid phase. Colloids Interface Sci. Commun. 45, 100517 (2021)CrossRef
15.
Zurück zum Zitat Guterman, V.E., et al.: Synthesis of nanostructured Pt/C electrocatalysts and effects of ambient atmosphere composition and an intermediate support on their microstructure. Inorg. Mater. 52(1), 23–28 (2015)CrossRef Guterman, V.E., et al.: Synthesis of nanostructured Pt/C electrocatalysts and effects of ambient atmosphere composition and an intermediate support on their microstructure. Inorg. Mater. 52(1), 23–28 (2015)CrossRef
16.
Zurück zum Zitat Alekseenko, A.A., et al.: Application of CO atmosphere in the liquid phase synthesis as a universal way to control the microstructure and electrochemical performance of Pt/C electrocatalysts. Appl. Catal. B 226, 608–615 (2018)CrossRef Alekseenko, A.A., et al.: Application of CO atmosphere in the liquid phase synthesis as a universal way to control the microstructure and electrochemical performance of Pt/C electrocatalysts. Appl. Catal. B 226, 608–615 (2018)CrossRef
17.
Zurück zum Zitat Rodrigues, T.S., et al.: Synthesis of colloidal metal nanocrystals: a comprehensive review on the reductants. Chem.–Eur. J. 24(64), 16944–16963 (2018) Rodrigues, T.S., et al.: Synthesis of colloidal metal nanocrystals: a comprehensive review on the reductants. Chem.–Eur. J. 24(64), 16944–16963 (2018)
18.
Zurück zum Zitat Arán-Ais, R.M., et al.: Electrochemical characterization of clean shape-controlled Pt nanoparticles prepared in presence of oleylamine/oleic acid. Electroanalysis 27(4), 945–956 (2015)CrossRef Arán-Ais, R.M., et al.: Electrochemical characterization of clean shape-controlled Pt nanoparticles prepared in presence of oleylamine/oleic acid. Electroanalysis 27(4), 945–956 (2015)CrossRef
19.
Zurück zum Zitat Mathiesen, J.K., et al.: Insights from in situ studies on the early stages of platinum nanoparticle formation. J. Phys. Chem. Lett. 12, 3224–3231 (2021)CrossRefPubMed Mathiesen, J.K., et al.: Insights from in situ studies on the early stages of platinum nanoparticle formation. J. Phys. Chem. Lett. 12, 3224–3231 (2021)CrossRefPubMed
20.
Zurück zum Zitat Danilenko, M.V., et al.: Nucleation/growth of the platinum nanoparticles under the liquid phase synthesis. Colloids Surf. A 630, 127525 (2021)CrossRef Danilenko, M.V., et al.: Nucleation/growth of the platinum nanoparticles under the liquid phase synthesis. Colloids Surf. A 630, 127525 (2021)CrossRef
21.
Zurück zum Zitat Quinson, J., et al.: Solvent‐dependent growth and stabilization mechanisms of surfactant-free colloidal Pt nanoparticles. Chem.– Eur. J. 26(41), 9012–9023 (2020) Quinson, J., et al.: Solvent‐dependent growth and stabilization mechanisms of surfactant-free colloidal Pt nanoparticles. Chem.– Eur. J. 26(41), 9012–9023 (2020)
22.
Zurück zum Zitat Quinson, J., et al.: Investigating particle size effects in catalysis by applying a size controlled and surfactant-free synthesis of colloidal nanoparticles in alkaline ethylene glycol – the case study of the oxygen reduction reaction on Pt. ACS Catal. 8(7), 6627–6635 (2018)CrossRef Quinson, J., et al.: Investigating particle size effects in catalysis by applying a size controlled and surfactant-free synthesis of colloidal nanoparticles in alkaline ethylene glycol – the case study of the oxygen reduction reaction on Pt. ACS Catal. 8(7), 6627–6635 (2018)CrossRef
23.
Zurück zum Zitat Thanh, N.T.K., et al.: Mechanisms of nucleation and growth of nanoparticles in solution. Chem. Rev. 114(15), 7610–7630 (2014)CrossRefPubMed Thanh, N.T.K., et al.: Mechanisms of nucleation and growth of nanoparticles in solution. Chem. Rev. 114(15), 7610–7630 (2014)CrossRefPubMed
24.
Zurück zum Zitat Paperzh, K.O., et al.: Advanced methods of controlling the morphology, activity, and durability of Pt/C electrocatalysts. ACS Appl. Energy Mater. 5(8), 9530–9541 (2022)CrossRef Paperzh, K.O., et al.: Advanced methods of controlling the morphology, activity, and durability of Pt/C electrocatalysts. ACS Appl. Energy Mater. 5(8), 9530–9541 (2022)CrossRef
25.
Zurück zum Zitat Langford, J.I., et al.: Scherrer after sixty years: a survey and some new results in the determination of crystallite size. J. Appl. Crystall. 11(2), 102–113 (1977)CrossRef Langford, J.I., et al.: Scherrer after sixty years: a survey and some new results in the determination of crystallite size. J. Appl. Crystall. 11(2), 102–113 (1977)CrossRef
26.
Zurück zum Zitat Vega, L., et al.: Nanostructuring determines poisoning: tailoring CO adsorption on PtCu bimetallic nanoparticles. Mater. Adv. 3, 4159–4169 (2022)CrossRef Vega, L., et al.: Nanostructuring determines poisoning: tailoring CO adsorption on PtCu bimetallic nanoparticles. Mater. Adv. 3, 4159–4169 (2022)CrossRef
27.
Zurück zum Zitat Paperzh, K.O., et al.: The integrated study of the morphology and the electrochemical behavior of Pt-based ORR electrocatalysts during the stress testing. Int. J. Hydrogen Energy 48(49) (2023) Paperzh, K.O., et al.: The integrated study of the morphology and the electrochemical behavior of Pt-based ORR electrocatalysts during the stress testing. Int. J. Hydrogen Energy 48(49) (2023)
28.
Zurück zum Zitat Paperzh, K.O., et al.: Stability and activity of platinum nanoparticles in the oxygen electroreduction reaction: is size or uniformity of primary importance? Beilstein J. Nanotechnol. 12, 593–606 (2021)CrossRefPubMedPubMedCentral Paperzh, K.O., et al.: Stability and activity of platinum nanoparticles in the oxygen electroreduction reaction: is size or uniformity of primary importance? Beilstein J. Nanotechnol. 12, 593–606 (2021)CrossRefPubMedPubMedCentral
29.
Zurück zum Zitat Guterman, V.E., et al.: Microstructure and size effects in Pt/C and Pt3Ni/C electrocatalysts synthesized in solutions based on binary organic solvents. Appl. Catal. A 453, 113–120 (2013)CrossRef Guterman, V.E., et al.: Microstructure and size effects in Pt/C and Pt3Ni/C electrocatalysts synthesized in solutions based on binary organic solvents. Appl. Catal. A 453, 113–120 (2013)CrossRef
31.
Zurück zum Zitat Alekseenko, A.A., et al.: Effect of wet synthesis conditions on the microstructure and active surface area of Pt/C catalysts. Inorg. Mater. 51(12), 1258–1263 (2015)CrossRef Alekseenko, A.A., et al.: Effect of wet synthesis conditions on the microstructure and active surface area of Pt/C catalysts. Inorg. Mater. 51(12), 1258–1263 (2015)CrossRef
32.
Zurück zum Zitat Ritubarna, B., et al.: Detection of ambient oxidation of ultrasmall supported platinum nanoparticles with benchtop powder X-ray diffraction. Catal. Lett.. Lett. 147, 1754–1764 (2017)CrossRef Ritubarna, B., et al.: Detection of ambient oxidation of ultrasmall supported platinum nanoparticles with benchtop powder X-ray diffraction. Catal. Lett.. Lett. 147, 1754–1764 (2017)CrossRef
33.
Zurück zum Zitat Laszlo, G., et al.: Heterogeneous nucleation of/on nanoparticles: a density functional study using the phase-field crystal model. Chem. Soc. Rev. 43, 2159 (2014)CrossRef Laszlo, G., et al.: Heterogeneous nucleation of/on nanoparticles: a density functional study using the phase-field crystal model. Chem. Soc. Rev. 43, 2159 (2014)CrossRef
Metadaten
Titel
Control Over Morphological Characteristics of the Pt/C Catalysts Obtained by the Liquid-Phase Synthesis
verfasst von
Yu. Bayan
K. Paperzh
M. Danilenko
D. Alekseenko
Yu. Pankova
I. Pankov
A. Alekseenko
Copyright-Jahr
2024
DOI
https://doi.org/10.1007/978-3-031-52239-0_1