Skip to main content
Erschienen in:
Buchtitelbild

2019 | OriginalPaper | Buchkapitel

Control Propellant Minimization for the Next Generation Gravity Mission

verfasst von : Alberto Anselmi, Stefano Cesare, Sabrina Dionisio, Giorgio Fasano, Luca Massotti

Erschienen in: Modeling and Optimization in Space Engineering

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This chapter addresses the Next Generation Gravity Mission (NGGM), a candidate Earth observation mission of the European Space Agency (ESA), currently undergoing system and technology studies. NGGM is intended to continue the series of ESA missions measuring Earth gravity from space, successfully started with the Gravity field and Ocean Circulation Explorer (GOCE) satellite which flew between 2009 and 2013. Whereas GOCE measured static gravity by a three-axis gradiometer, NGGM will monitor the temporal variations of the gravity field due to mass (primarily water) transport in the Earth system with a concept pioneered by GRACE (Gravity Recovery and Climate Experiment), with improved sensitivity, thanks to laser tracking between satellite pairs. As a monitoring mission, NGGM shall be of a long duration, 11 years according to the current scientific requirements. In addition, the laser interferometer and accelerometer payloads impose demanding requirements such as suppression of the air drag disturbances, precise pointing, and angular rate control. The long lifetime and the control requirements can only be met by using electric thrusters with high specific impulse, hence low mass consumption. Nevertheless, propellant mass minimization remains a dominant task of the mission design. This objective requires proper selection of the thruster operating ranges, as well as an optimized thruster layout and thrust dispatching algorithms. The method applied to solve the thrust dispatching problem is the subject of another chapter in this volume. The present chapter illustrates the flow-down of mission and system requirements into the proposed spacecraft implementation and operation features, focusing on the thruster layout optimization problem. The proposed design is shown to meet the mission requirements, thus validating the methodology adopted as well as the results achieved. Further research avenues opened by the current work are outlined in the conclusions.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Kozai, Y.: The earth gravitational potential derived from satellite motion. Space Sci. Rev. 5(6), 818–879 (1966)CrossRef Kozai, Y.: The earth gravitational potential derived from satellite motion. Space Sci. Rev. 5(6), 818–879 (1966)CrossRef
2.
Zurück zum Zitat Tapley, B.D., et al.: Station coordinates, baselines, and earth rotation from LAGEOS laser ranging: 1976–1984. J. Geophys. Res. 90, 9235–9248 (1985)CrossRef Tapley, B.D., et al.: Station coordinates, baselines, and earth rotation from LAGEOS laser ranging: 1976–1984. J. Geophys. Res. 90, 9235–9248 (1985)CrossRef
3.
Zurück zum Zitat Bender, P.L., et al.: Integrated laser doppler method for measuring planetary gravity fields. In: Colombo, O.L. (ed.) From Mars to Greenland: Charting Gravity with Space and Airborne Instruments. Springer, New York (1992) Bender, P.L., et al.: Integrated laser doppler method for measuring planetary gravity fields. In: Colombo, O.L. (ed.) From Mars to Greenland: Charting Gravity with Space and Airborne Instruments. Springer, New York (1992)
4.
Zurück zum Zitat NRC (National Research Council): Applications of a Dedicated Gravitational Satellite Mission. Technical report, Academy Press, Washington D.C. (1979) NRC (National Research Council): Applications of a Dedicated Gravitational Satellite Mission. Technical report, Academy Press, Washington D.C. (1979)
5.
Zurück zum Zitat Wells, W.C. (ed.): Spaceborne gravity gradiometers. NASA Conference Publication 2305, Greenbelt, Maryland (1984) Wells, W.C. (ed.): Spaceborne gravity gradiometers. NASA Conference Publication 2305, Greenbelt, Maryland (1984)
6.
Zurück zum Zitat Williamstown Report: The terrestrial environment. In: Kaula, W. (ed.) Solid-Earth and Ocean Physics: Application of Space and Astronomic Techniques, Report of a Study at Williamstown, Mass., to the NASA (1969) Williamstown Report: The terrestrial environment. In: Kaula, W. (ed.) Solid-Earth and Ocean Physics: Application of Space and Astronomic Techniques, Report of a Study at Williamstown, Mass., to the NASA (1969)
7.
Zurück zum Zitat Tapley, B.D., et al.: GRACE measurements of mass variability in the earth system. Science. 305, 503–506 (2004)CrossRef Tapley, B.D., et al.: GRACE measurements of mass variability in the earth system. Science. 305, 503–506 (2004)CrossRef
8.
Zurück zum Zitat Cesare, S., et al.: The European way to gravimetry: from GOCE to NGGM. Adv. Space Res. 57, 1047–1064 (2016)CrossRef Cesare, S., et al.: The European way to gravimetry: from GOCE to NGGM. Adv. Space Res. 57, 1047–1064 (2016)CrossRef
9.
Zurück zum Zitat Rummel, R.: Geoid and gravity in earth sciences – an overview. Earth Moon Planet. 3(2004), 94 (2004)MATH Rummel, R.: Geoid and gravity in earth sciences – an overview. Earth Moon Planet. 3(2004), 94 (2004)MATH
10.
Zurück zum Zitat Sechi, G., et al.: In-flight results from the drag-free and attitude control of the GOCE satellite. In: Proceedings of the 18th IFAC World Congress, Milano, Italy (2011) Sechi, G., et al.: In-flight results from the drag-free and attitude control of the GOCE satellite. In: Proceedings of the 18th IFAC World Congress, Milano, Italy (2011)
11.
Zurück zum Zitat Gruber, T., et al.: Simulation of the time-variable gravity field by means of coupled geophysical models. Earth Syst. Sci. Data. 3, 19–35 (2011)CrossRef Gruber, T., et al.: Simulation of the time-variable gravity field by means of coupled geophysical models. Earth Syst. Sci. Data. 3, 19–35 (2011)CrossRef
12.
Zurück zum Zitat Iran Pour S., et al.: Assessment of Satellite Constellations for Monitoring the Variations in Earth’s Gravity Field. University of Stuttgart Final Report to ESA (2015) Iran Pour S., et al.: Assessment of Satellite Constellations for Monitoring the Variations in Earth’s Gravity Field. University of Stuttgart Final Report to ESA (2015)
13.
Zurück zum Zitat Bender, P.L., et al.: A possible dual-GRACE mission with 90 and 63 inclination orbits. In: Proceedings of 3rd International Symposium on Formation Flying, Missions and Technologies, Noordwijk, The Netherlands (2009) Bender, P.L., et al.: A possible dual-GRACE mission with 90 and 63 inclination orbits. In: Proceedings of 3rd International Symposium on Formation Flying, Missions and Technologies, Noordwijk, The Netherlands (2009)
14.
Zurück zum Zitat Fasano, G.: Dynamic system control dispatch: a global optimization approach. In: Fasano, G., Pintér, J.D. (eds.) Modeling and Optimization in Space Engineering – State of the Art and New Challenges. Springer, New York (2019) Fasano, G.: Dynamic system control dispatch: a global optimization approach. In: Fasano, G., Pintér, J.D. (eds.) Modeling and Optimization in Space Engineering – State of the Art and New Challenges. Springer, New York (2019)
15.
Zurück zum Zitat Bacchetta, A., et al.: The results of the next generation gravity mission AOCS study. In: Proceedings of 9th International ESA Conference on GNC Systems (2014) Bacchetta, A., et al.: The results of the next generation gravity mission AOCS study. In: Proceedings of 9th International ESA Conference on GNC Systems (2014)
16.
Zurück zum Zitat Ben-Tal, A., Nemirovski, A.: On polyhedral approximations of the second-order cone. Math. Oper. Res. 26(2), 193–205 (2001)MathSciNetCrossRef Ben-Tal, A., Nemirovski, A.: On polyhedral approximations of the second-order cone. Math. Oper. Res. 26(2), 193–205 (2001)MathSciNetCrossRef
17.
Zurück zum Zitat Horst, R., Pardalos, P.M., Thoai, N.V.: Introduction to Global Optimization, 2nd edn. Kluwer, Dordrecht (2000)CrossRef Horst, R., Pardalos, P.M., Thoai, N.V.: Introduction to Global Optimization, 2nd edn. Kluwer, Dordrecht (2000)CrossRef
18.
Zurück zum Zitat Goldreich, O.: Computational Complexity: a Conceptual Perspective. Cambridge University Press, Cambridge (2008)CrossRef Goldreich, O.: Computational Complexity: a Conceptual Perspective. Cambridge University Press, Cambridge (2008)CrossRef
19.
Zurück zum Zitat Jünger, M., et al. (eds.): 50 Years of Integer Programming 1958–2008. From the Early Years to the State-of-the-Art. Springer, Berlin/Heidelberg (2010) Jünger, M., et al. (eds.): 50 Years of Integer Programming 1958–2008. From the Early Years to the State-of-the-Art. Springer, Berlin/Heidelberg (2010)
20.
Zurück zum Zitat Nocedal, J., Wright, S.J.: Numerical Optimization, 2nd edn. Springer, Berlin/New York (2006)MATH Nocedal, J., Wright, S.J.: Numerical Optimization, 2nd edn. Springer, Berlin/New York (2006)MATH
21.
Zurück zum Zitat Ruszczyński, A.P.: Nonlinear Optimization, p. xii+454. Princeton University Press, Princeton (2006)MATH Ruszczyński, A.P.: Nonlinear Optimization, p. xii+454. Princeton University Press, Princeton (2006)MATH
22.
Zurück zum Zitat Williams, H.P.: Model Building in Mathematical Programming, 5th edn. Wiley, Hoboken (2013)MATH Williams, H.P.: Model Building in Mathematical Programming, 5th edn. Wiley, Hoboken (2013)MATH
23.
Zurück zum Zitat Pintér, J.D.: Global Optimization in Action. Kluwer, Dordrecht (1996)CrossRef Pintér, J.D.: Global Optimization in Action. Kluwer, Dordrecht (1996)CrossRef
24.
Zurück zum Zitat Pintér, J.D.: LGO - A Model Development and Solver System for Global-Local Nonlinear Optimization. User’s Guide. (Current edition) Published and distributed by Pintér Consulting Services, Inc., Canada (2017) Pintér, J.D.: LGO - A Model Development and Solver System for Global-Local Nonlinear Optimization. User’s Guide. (Current edition) Published and distributed by Pintér Consulting Services, Inc., Canada (2017)
Metadaten
Titel
Control Propellant Minimization for the Next Generation Gravity Mission
verfasst von
Alberto Anselmi
Stefano Cesare
Sabrina Dionisio
Giorgio Fasano
Luca Massotti
Copyright-Jahr
2019
DOI
https://doi.org/10.1007/978-3-030-10501-3_1

Premium Partner