Skip to main content

2021 | OriginalPaper | Buchkapitel

Controllable Cardiac Synthesis via Disentangled Anatomy Arithmetic

verfasst von : Spyridon Thermos, Xiao Liu, Alison O’Neil, Sotirios A. Tsaftaris

Erschienen in: Medical Image Computing and Computer Assisted Intervention – MICCAI 2021

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Acquiring annotated data at scale with rare diseases or conditions remains a challenge. It would be extremely useful to have a method that controllably synthesizes images that can correct such underrepresentation. Assuming a proper latent representation, the idea of a “latent vector arithmetic” could offer the means of achieving such synthesis. A proper representation must encode the fidelity of the input data, preserve invariance and equivariance, and permit arithmetic operations. Motivated by the ability to disentangle images into spatial anatomy (tensor) factors and accompanying imaging (vector) representations, we propose a framework termed “disentangled anatomy arithmetic”, in which a generative model learns to combine anatomical factors of different input images such that when they are re-entangled with the desired imaging modality (e.g. MRI), plausible new cardiac images are created with the target characteristics. To encourage a realistic combination of anatomy factors after the arithmetic step, we propose a localized noise injection network that precedes the generator. Our model is used to generate realistic images, pathology labels, and segmentation masks that are used to augment the existing datasets and subsequently improve post-hoc classification and segmentation tasks. Code is publicly available at https://​github.​com/​vios-s/​DAA-GAN.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Alharbi, Y., Smith, N., Wonka, P.: Latent filter scaling for multimodal unsupervised image-to-image translation. In: Proceedings of the CVPR, pp. 1458–1466 (2019) Alharbi, Y., Smith, N., Wonka, P.: Latent filter scaling for multimodal unsupervised image-to-image translation. In: Proceedings of the CVPR, pp. 1458–1466 (2019)
2.
Zurück zum Zitat Alharbi, Y., Wonka, P.: Disentangled image generation through structured noise injection. In: Proceedings of the CVPR, pp. 5134–5142 (2020) Alharbi, Y., Wonka, P.: Disentangled image generation through structured noise injection. In: Proceedings of the CVPR, pp. 5134–5142 (2020)
3.
Zurück zum Zitat Ben-Cohen, A., Klang, E., Raskin, S.P., Amitai, M.M., Greenspan, H.: Virtual PET images from CT data using deep convolutional networks: initial results. In: Tsaftaris, S.A., Gooya, A., Frangi, A.F., Prince, J.L. (eds.) SASHIMI 2017. LNCS, vol. 10557, pp. 49–57. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68127-6_6CrossRef Ben-Cohen, A., Klang, E., Raskin, S.P., Amitai, M.M., Greenspan, H.: Virtual PET images from CT data using deep convolutional networks: initial results. In: Tsaftaris, S.A., Gooya, A., Frangi, A.F., Prince, J.L. (eds.) SASHIMI 2017. LNCS, vol. 10557, pp. 49–57. Springer, Cham (2017). https://​doi.​org/​10.​1007/​978-3-319-68127-6_​6CrossRef
4.
Zurück zum Zitat Bengio, Y., Courville, A., Vincent, P.: Representation learning: a review and new perspectives. IEEE TPAMI 35(8), 1798–1828 (2013)CrossRef Bengio, Y., Courville, A., Vincent, P.: Representation learning: a review and new perspectives. IEEE TPAMI 35(8), 1798–1828 (2013)CrossRef
5.
Zurück zum Zitat Bernard, O., Lalande, A., Zotti, C., et al.: Deep learning techniques for automatic MRI cardiac multi-structures segmentation and diagnosis: is the problem solved? IEEE TMI 37(11), 2514–2525 (2018) Bernard, O., Lalande, A., Zotti, C., et al.: Deep learning techniques for automatic MRI cardiac multi-structures segmentation and diagnosis: is the problem solved? IEEE TMI 37(11), 2514–2525 (2018)
6.
Zurück zum Zitat Campello, V.M., et al.: Multi-centre, multi-vendor and multi-disease cardiac segmentation: the M&Ms challenge. IEEE TMI (2020, under review) Campello, V.M., et al.: Multi-centre, multi-vendor and multi-disease cardiac segmentation: the M&Ms challenge. IEEE TMI (2020, under review)
7.
Zurück zum Zitat Chartsias, A., et al.: Disentangled representation learning in cardiac image analysis. MIA 58, 101535 (2019) Chartsias, A., et al.: Disentangled representation learning in cardiac image analysis. MIA 58, 101535 (2019)
10.
Zurück zum Zitat Costa, P., et al.: End-to-end adversarial retinal image synthesis. IEEE TMI 37(3), 781–791 (2018) Costa, P., et al.: End-to-end adversarial retinal image synthesis. IEEE TMI 37(3), 781–791 (2018)
11.
Zurück zum Zitat Dar, S.U., Yurt, M., Karacan, L., Erdem, A., Erdem, E., Çukur, T.: Image synthesis in multi-contrast MRI with conditional generative adversarial networks. IEEE TMI 38(10), 2375–2388 (2019) Dar, S.U., Yurt, M., Karacan, L., Erdem, A., Erdem, E., Çukur, T.: Image synthesis in multi-contrast MRI with conditional generative adversarial networks. IEEE TMI 38(10), 2375–2388 (2019)
12.
Zurück zum Zitat Dice, L.R.: Measures of the amount of ecologic association between species. Ecology 26(3), 297–302 (1945)CrossRef Dice, L.R.: Measures of the amount of ecologic association between species. Ecology 26(3), 297–302 (1945)CrossRef
13.
Zurück zum Zitat Frid-Adar, M., Diamant, I., Klang, E., Amitai, M., Goldberger, J., Greenspan, H.: GAN-based synthetic medical image augmentation for increased CNN performance in liver lesion classification. Neurocomputing 321, 321–331 (2018)CrossRef Frid-Adar, M., Diamant, I., Klang, E., Amitai, M., Goldberger, J., Greenspan, H.: GAN-based synthetic medical image augmentation for increased CNN performance in liver lesion classification. Neurocomputing 321, 321–331 (2018)CrossRef
14.
Zurück zum Zitat Gabbay, A., Hoshen, Y.: Demystifying inter-class disentanglement. In: ICLR (2020) Gabbay, A., Hoshen, Y.: Demystifying inter-class disentanglement. In: ICLR (2020)
15.
Zurück zum Zitat Goodfellow, I., et al.: Generative adversarial nets. In: Proceedings of the NeurIPS, pp. 2672–2680 (2014) Goodfellow, I., et al.: Generative adversarial nets. In: Proceedings of the NeurIPS, pp. 2672–2680 (2014)
16.
Zurück zum Zitat Guibas, J.T., Virdi, T.S., Li, P.S.: Synthetic medical images from dual generative adversarial networks. In: Advances in Neural Information Processing Systems Workshop (2017) Guibas, J.T., Virdi, T.S., Li, P.S.: Synthetic medical images from dual generative adversarial networks. In: Advances in Neural Information Processing Systems Workshop (2017)
17.
Zurück zum Zitat Havaei, M., Mao, X., Wang, Y., Lao, Q.: Conditional generation of medical images via disentangled adversarial inference. Med. Image Anal. 72, 102106 (2020)CrossRef Havaei, M., Mao, X., Wang, Y., Lao, Q.: Conditional generation of medical images via disentangled adversarial inference. Med. Image Anal. 72, 102106 (2020)CrossRef
18.
Zurück zum Zitat Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs trained by a two time-scale update rule converge to a local Nash equilibrium. In: Proceedings of the NeurIPS, pp. 6626–6637 (2017) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs trained by a two time-scale update rule converge to a local Nash equilibrium. In: Proceedings of the NeurIPS, pp. 6626–6637 (2017)
19.
Zurück zum Zitat Hu, X., Chung, A.G., Fieguth, P., Khalvati, F., Haider, M.A., Wong, A.: ProstateGAN: mitigating data bias via prostate diffusion imaging synthesis with generative adversarial networks. In: NeurIPS Workshop (2018) Hu, X., Chung, A.G., Fieguth, P., Khalvati, F., Haider, M.A., Wong, A.: ProstateGAN: mitigating data bias via prostate diffusion imaging synthesis with generative adversarial networks. In: NeurIPS Workshop (2018)
20.
Zurück zum Zitat Huang, X., Belongie, S.: Arbitrary style transfer in real-time with adaptive instance normalization. In: Proceedings of the ICCV, pp. 1501–1510 (2017) Huang, X., Belongie, S.: Arbitrary style transfer in real-time with adaptive instance normalization. In: Proceedings of the ICCV, pp. 1501–1510 (2017)
21.
Zurück zum Zitat Jin, D., Xu, Z., Tang, Y., Harrison, A.P., Mollura, D.J.: CT-realistic lung nodule simulation from 3D conditional generative adversarial networks for robust lung segmentation. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11071, pp. 732–740. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00934-2_81CrossRef Jin, D., Xu, Z., Tang, Y., Harrison, A.P., Mollura, D.J.: CT-realistic lung nodule simulation from 3D conditional generative adversarial networks for robust lung segmentation. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11071, pp. 732–740. Springer, Cham (2018). https://​doi.​org/​10.​1007/​978-3-030-00934-2_​81CrossRef
22.
Zurück zum Zitat Karras, T., Laine, S., Aila, T.: A style-based generator architecture for generative adversarial networks. In: Proceedings of the CVPR, pp. 4396–4405 (2019) Karras, T., Laine, S., Aila, T.: A style-based generator architecture for generative adversarial networks. In: Proceedings of the CVPR, pp. 4396–4405 (2019)
24.
Zurück zum Zitat Li, Q., Yu, Z., Wang, Y., Zheng, H.: TumorGAN: a multi-modal data augmentation framework for brain tumor segmentation. Sensors 20(15), 4203 (2020)CrossRef Li, Q., Yu, Z., Wang, Y., Zheng, H.: TumorGAN: a multi-modal data augmentation framework for brain tumor segmentation. Sensors 20(15), 4203 (2020)CrossRef
25.
Zurück zum Zitat Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least squares generative adversarial networks. In: Proceedings of the ICCV, pp. 2813–2821 (2017) Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least squares generative adversarial networks. In: Proceedings of the ICCV, pp. 2813–2821 (2017)
26.
Zurück zum Zitat Miyato, T., Kataoka, T., Koyama, M., Yoshida, Y.: Spectral normalization for generative adversarial networks. In: ICLR (2018) Miyato, T., Kataoka, T., Koyama, M., Yoshida, Y.: Spectral normalization for generative adversarial networks. In: ICLR (2018)
27.
Zurück zum Zitat Mok, T.C.W., Chung, A.C.S.: Learning data augmentation for brain tumor segmentation with coarse-to-fine generative adversarial networks. In: Crimi, A., Bakas, S., Kuijf, H., Keyvan, F., Reyes, M., van Walsum, T. (eds.) BrainLes 2018. LNCS, vol. 11383, pp. 70–80. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-11723-8_7CrossRef Mok, T.C.W., Chung, A.C.S.: Learning data augmentation for brain tumor segmentation with coarse-to-fine generative adversarial networks. In: Crimi, A., Bakas, S., Kuijf, H., Keyvan, F., Reyes, M., van Walsum, T. (eds.) BrainLes 2018. LNCS, vol. 11383, pp. 70–80. Springer, Cham (2019). https://​doi.​org/​10.​1007/​978-3-030-11723-8_​7CrossRef
29.
Zurück zum Zitat Odena, A., Olah, C., Shlens, J.: Conditional image synthesis with auxiliary classifier GANs. In: Proceedings of the ICML, pp. 2642–2651 (2017) Odena, A., Olah, C., Shlens, J.: Conditional image synthesis with auxiliary classifier GANs. In: Proceedings of the ICML, pp. 2642–2651 (2017)
30.
Zurück zum Zitat Park, T., Liu, M.Y., Wang, T.C., Zhu, J.Y.: Semantic image synthesis with spatially-adaptive normalization. In: Proceedings of the CVPR, pp. 2337–2346 (2019) Park, T., Liu, M.Y., Wang, T.C., Zhu, J.Y.: Semantic image synthesis with spatially-adaptive normalization. In: Proceedings of the CVPR, pp. 2337–2346 (2019)
31.
Zurück zum Zitat Radford, A., Metz, L., Chintala, S.: Unsupervised representation learning with deep convolutional generative adversarial networks. In: ICLR (2016) Radford, A., Metz, L., Chintala, S.: Unsupervised representation learning with deep convolutional generative adversarial networks. In: ICLR (2016)
34.
Zurück zum Zitat Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. In: ICLR (2015) Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. In: ICLR (2015)
35.
Zurück zum Zitat Sørensen, T.: A method of establishing groups of equal amplitude in plant sociology based on similarity of species content and its application to analyses of the vegetation on Danish commons. R. Danish Acad. Sci. Lett. 5(4), 1–34 (1948) Sørensen, T.: A method of establishing groups of equal amplitude in plant sociology based on similarity of species content and its application to analyses of the vegetation on Danish commons. R. Danish Acad. Sci. Lett. 5(4), 1–34 (1948)
36.
Zurück zum Zitat Yang, J., Dvornek, N.C., Zhang, F., Chapiro, J., Lin, M.D., Duncan, J.S.: Unsupervised domain adaptation via disentangled representations: application to cross-modality liver segmentation. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11765, pp. 255–263. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32245-8_29CrossRef Yang, J., Dvornek, N.C., Zhang, F., Chapiro, J., Lin, M.D., Duncan, J.S.: Unsupervised domain adaptation via disentangled representations: application to cross-modality liver segmentation. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11765, pp. 255–263. Springer, Cham (2019). https://​doi.​org/​10.​1007/​978-3-030-32245-8_​29CrossRef
Metadaten
Titel
Controllable Cardiac Synthesis via Disentangled Anatomy Arithmetic
verfasst von
Spyridon Thermos
Xiao Liu
Alison O’Neil
Sotirios A. Tsaftaris
Copyright-Jahr
2021
DOI
https://doi.org/10.1007/978-3-030-87199-4_15