Skip to main content

2021 | OriginalPaper | Buchkapitel

Cooperative Training and Latent Space Data Augmentation for Robust Medical Image Segmentation

verfasst von : Chen Chen, Kerstin Hammernik, Cheng Ouyang, Chen Qin, Wenjia Bai, Daniel Rueckert

Erschienen in: Medical Image Computing and Computer Assisted Intervention – MICCAI 2021

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Deep learning-based segmentation methods are vulnerable to unforeseen data distribution shifts during deployment, e.g. change of image appearances or contrasts caused by different scanners, unexpected imaging artifacts etc. In this paper, we present a cooperative framework for training image segmentation models and a latent space augmentation method for generating hard examples. Both contributions improve model generalization and robustness with limited data. The cooperative training framework consists of a fast-thinking network (FTN) and a slow-thinking network (STN). The FTN learns decoupled image features and shape features for image reconstruction and segmentation tasks. The STN learns shape priors for segmentation correction and refinement. The two networks are trained in a cooperative manner. The latent space augmentation generates challenging examples for training by masking the decoupled latent space in both channel-wise and spatial-wise manners. We performed extensive experiments on public cardiac imaging datasets. Using only 10 subjects from a single site for training, we demonstrated improved cross-site segmentation performance, and increased robustness against various unforeseen imaging artifacts compared to strong baseline methods. Particularly, cooperative training with latent space data augmentation yields 15% improvement in terms of average Dice score when compared to a standard training method.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Shen, D., et al.: Deep learning in medical image analysis. Annu. Rev. Biomed. Eng. 19, 221–248 (2017)CrossRef Shen, D., et al.: Deep learning in medical image analysis. Annu. Rev. Biomed. Eng. 19, 221–248 (2017)CrossRef
2.
Zurück zum Zitat Litjens, G., et al.: A survey on deep learning in medical image analysis. Med. Image Anal. 42, 60–88 (2017)CrossRef Litjens, G., et al.: A survey on deep learning in medical image analysis. Med. Image Anal. 42, 60–88 (2017)CrossRef
3.
Zurück zum Zitat Dou, Q., et al.: Domain generalization via model-agnostic learning of semantic features. In: Wallach, H.M., et al. (eds.) NeurIPS 2019, pp. 6447–6458 (2019) Dou, Q., et al.: Domain generalization via model-agnostic learning of semantic features. In: Wallach, H.M., et al. (eds.) NeurIPS 2019, pp. 6447–6458 (2019)
4.
Zurück zum Zitat Albuquerque, I., et al.: Improving out-of-distribution generalization via multi-task self-supervised pretraining. arXiv preprint arXiv:2003.13525 (2020) Albuquerque, I., et al.: Improving out-of-distribution generalization via multi-task self-supervised pretraining. arXiv preprint arXiv:​2003.​13525 (2020)
7.
8.
Zurück zum Zitat Daniel, K.: Thinking, fast and slow (2017) Daniel, K.: Thinking, fast and slow (2017)
9.
Zurück zum Zitat Shorten, C., et al.: A survey on image data augmentation for deep learning. J. Big Data 6(1), 60 (2019)CrossRef Shorten, C., et al.: A survey on image data augmentation for deep learning. J. Big Data 6(1), 60 (2019)CrossRef
10.
Zurück zum Zitat Zhang, L., et al.: Generalizing deep learning for medical image segmentation to unseen domains via deep stacked transformation. IEEE Trans. Med. Imaging 39(7), 2531–2540 (2020)CrossRef Zhang, L., et al.: Generalizing deep learning for medical image segmentation to unseen domains via deep stacked transformation. IEEE Trans. Med. Imaging 39(7), 2531–2540 (2020)CrossRef
11.
Zurück zum Zitat Chen, C., et al.: Improving the generalizability of convolutional neural network-based segmentation on CMR images. Front. Cardiovasc. Med. 7, 105 (2020)CrossRef Chen, C., et al.: Improving the generalizability of convolutional neural network-based segmentation on CMR images. Front. Cardiovasc. Med. 7, 105 (2020)CrossRef
12.
Zurück zum Zitat Devries, T., et al.: Improved regularization of convolutional neural networks with cutout. CoRR, abs/1708.04552 (2017) Devries, T., et al.: Improved regularization of convolutional neural networks with cutout. CoRR, abs/1708.04552 (2017)
13.
Zurück zum Zitat Lopes, R.G., et al.: Improving robustness without sacrificing accuracy with patch gaussian augmentation. CoRR, abs/1906.02611 (2019) Lopes, R.G., et al.: Improving robustness without sacrificing accuracy with patch gaussian augmentation. CoRR, abs/1906.02611 (2019)
15.
16.
Zurück zum Zitat Miyato, T., Maeda, S.-I., Koyama, M., Ishii, S.: Virtual adversarial training: a regularization method for supervised and semi-supervised learning. TPAMI 41, 1979–1993 (2018)CrossRef Miyato, T., Maeda, S.-I., Koyama, M., Ishii, S.: Virtual adversarial training: a regularization method for supervised and semi-supervised learning. TPAMI 41, 1979–1993 (2018)CrossRef
18.
Zurück zum Zitat Zhang, X., et al.: Deep adversarial data augmentation for extremely low data regimes. IEEE Trans. Circuits Syst. Video Technol. 31(1), 15–28 (2021)CrossRef Zhang, X., et al.: Deep adversarial data augmentation for extremely low data regimes. IEEE Trans. Circuits Syst. Video Technol. 31(1), 15–28 (2021)CrossRef
19.
Zurück zum Zitat Zhao, L., et al.: Maximum-entropy adversarial data augmentation for improved generalization and robustness. In: NeurIPS (2020) Zhao, L., et al.: Maximum-entropy adversarial data augmentation for improved generalization and robustness. In: NeurIPS (2020)
20.
Zurück zum Zitat Zheng, W., Chen, Z., Lu, J., Zhou, J.: Hardness-aware deep metric learning. In: CVPR, pp. 72–81 (2019) Zheng, W., Chen, Z., Lu, J., Zhou, J.: Hardness-aware deep metric learning. In: CVPR, pp. 72–81 (2019)
24.
Zurück zum Zitat Tishby, N., et al.: The information bottleneck method. arXiv preprint physics/0004057 (2000) Tishby, N., et al.: The information bottleneck method. arXiv preprint physics/0004057 (2000)
26.
Zurück zum Zitat Tompson, J., et al.: Efficient object localization using convolutional networks. In: CVPR, pp. 648–656. IEEE Computer Society (2015) Tompson, J., et al.: Efficient object localization using convolutional networks. In: CVPR, pp. 648–656. IEEE Computer Society (2015)
27.
Zurück zum Zitat Madry, A., Makelov, A., Schmidt, L., Tsipras, D., Vladu, A.: Towards deep learning models resistant to adversarial attacks. In: ICLR, June 2017 Madry, A., Makelov, A., Schmidt, L., Tsipras, D., Vladu, A.: Towards deep learning models resistant to adversarial attacks. In: ICLR, June 2017
28.
Zurück zum Zitat Goodfellow, I.J., et al.: Explaining and harnessing adversarial examples. In: ICLR (2015) Goodfellow, I.J., et al.: Explaining and harnessing adversarial examples. In: ICLR (2015)
29.
Zurück zum Zitat Bernard, O., et al.: Deep learning techniques for automatic MRI cardiac multi-structures segmentation and diagnosis: is the problem solved? TMI 0062(11), 2514–2525 (2018) Bernard, O., et al.: Deep learning techniques for automatic MRI cardiac multi-structures segmentation and diagnosis: is the problem solved? TMI 0062(11), 2514–2525 (2018)
30.
Zurück zum Zitat Campello, V.M., et al.: Multi-centre, multi-vendor and multi-disease cardiac segmentation: the M&Ms challenge. IEEE Trans. Med. Imaging (under review) Campello, V.M., et al.: Multi-centre, multi-vendor and multi-disease cardiac segmentation: the M&Ms challenge. IEEE Trans. Med. Imaging (under review)
31.
Zurück zum Zitat Pérez-García, F., et al.: TorchIO: a Python library for efficient loading, preprocessing, augmentation and patch-based sampling of medical images in deep learning. arXiv:2003.04696 [cs, eess, stat], March 2020 Pérez-García, F., et al.: TorchIO: a Python library for efficient loading, preprocessing, augmentation and patch-based sampling of medical images in deep learning. arXiv:​2003.​04696 [cs, eess, stat], March 2020
33.
Zurück zum Zitat Xu, Z., et al.: Robust and generalizable visual representation learning via random convolutions. In: ICLR (2021) Xu, Z., et al.: Robust and generalizable visual representation learning via random convolutions. In: ICLR (2021)
34.
Zurück zum Zitat Cubuk, E.D., et al.: Autoaugment: learning augmentation strategies from data. In: CVPR, pp. 113–123 (2019) Cubuk, E.D., et al.: Autoaugment: learning augmentation strategies from data. In: CVPR, pp. 113–123 (2019)
35.
Zurück zum Zitat Shaw, R., et al.: MRI k-space motion artefact augmentation: model robustness and task-specific uncertainty. In: Jorge Cardoso, M., et al. (eds.) Proceedings of Machine Learning Research, MIDL, London, UK, 08–10 July 2019, vol. 102, pp. 427–436. PMLR (2019) Shaw, R., et al.: MRI k-space motion artefact augmentation: model robustness and task-specific uncertainty. In: Jorge Cardoso, M., et al. (eds.) Proceedings of Machine Learning Research, MIDL, London, UK, 08–10 July 2019, vol. 102, pp. 427–436. PMLR (2019)
36.
Zurück zum Zitat Christ, P.F., et al.: Automatic liver and lesion segmentation in CT using cascaded fully convolutional neural networks and 3D conditional random fields. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9901, pp. 415–423. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46723-8_48CrossRef Christ, P.F., et al.: Automatic liver and lesion segmentation in CT using cascaded fully convolutional neural networks and 3D conditional random fields. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9901, pp. 415–423. Springer, Cham (2016). https://​doi.​org/​10.​1007/​978-3-319-46723-8_​48CrossRef
Metadaten
Titel
Cooperative Training and Latent Space Data Augmentation for Robust Medical Image Segmentation
verfasst von
Chen Chen
Kerstin Hammernik
Cheng Ouyang
Chen Qin
Wenjia Bai
Daniel Rueckert
Copyright-Jahr
2021
DOI
https://doi.org/10.1007/978-3-030-87199-4_14