Skip to main content

2020 | OriginalPaper | Buchkapitel

Realistic Adversarial Data Augmentation for MR Image Segmentation

verfasst von : Chen Chen, Chen Qin, Huaqi Qiu, Cheng Ouyang, Shuo Wang, Liang Chen, Giacomo Tarroni, Wenjia Bai, Daniel Rueckert

Erschienen in: Medical Image Computing and Computer Assisted Intervention – MICCAI 2020

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Neural network-based approaches can achieve high accuracy in various medical image segmentation tasks. However, they generally require large labelled datasets for supervised learning. Acquiring and manually labelling a large medical dataset is expensive and sometimes impractical due to data sharing and privacy issues. In this work, we propose an adversarial data augmentation method for training neural networks for medical image segmentation. Instead of generating pixel-wise adversarial attacks, our model generates plausible and realistic signal corruptions, which models the intensity inhomogeneities caused by a common type of artefacts in MR imaging: bias field. The proposed method does not rely on generative networks, and can be used as a plug-in module for general segmentation networks in both supervised and semi-supervised learning. Using cardiac MR imaging we show that such an approach can improve the generalization ability and robustness of models as well as provide significant improvements in low-data scenarios.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Smistad, E., Falch, T.L., Bozorgi, M., Elster, A.C., Lindseth, F.: Medical image segmentation on GPUs-a comprehensive review. Med. Image Anal. 20(1), 1–18 (2015)CrossRef Smistad, E., Falch, T.L., Bozorgi, M., Elster, A.C., Lindseth, F.: Medical image segmentation on GPUs-a comprehensive review. Med. Image Anal. 20(1), 1–18 (2015)CrossRef
2.
Zurück zum Zitat Shen, D., Guorong, W., Suk, H.-I.: Deep learning in medical image analysis. Ann. Rev. Biomed. Eng. 19, 221–248 (2017)CrossRef Shen, D., Guorong, W., Suk, H.-I.: Deep learning in medical image analysis. Ann. Rev. Biomed. Eng. 19, 221–248 (2017)CrossRef
3.
Zurück zum Zitat Litjens, G., et al.: A survey on deep learning in medical image analysis. Med. Image Anal. 42, 60–88 (2017)CrossRef Litjens, G., et al.: A survey on deep learning in medical image analysis. Med. Image Anal. 42, 60–88 (2017)CrossRef
4.
Zurück zum Zitat Tajbakhsh, N., Jeyaseelan, L., Li, Q., Chiang, J., Wu, Z., Ding, X.: Embracing imperfect datasets: a review of deep learning solutions for medical image segmentation. Arxiv, August 2019 Tajbakhsh, N., Jeyaseelan, L., Li, Q., Chiang, J., Wu, Z., Ding, X.: Embracing imperfect datasets: a review of deep learning solutions for medical image segmentation. Arxiv, August 2019
5.
Zurück zum Zitat Zhao, A., Balakrishnan, G., Durand, F., Guttag, J.V., Dalca, A.V.: Data augmentation using learned transformations for one-shot medical image segmentation. In: CVPR, pp. 8543–8553 (2019) Zhao, A., Balakrishnan, G., Durand, F., Guttag, J.V., Dalca, A.V.: Data augmentation using learned transformations for one-shot medical image segmentation. In: CVPR, pp. 8543–8553 (2019)
9.
Zurück zum Zitat Lei, N., et al.: A geometric understanding of deep learning. Engineering 6, 361–374 (2020) CrossRef Lei, N., et al.: A geometric understanding of deep learning. Engineering 6, 361–374 (2020) CrossRef
10.
Zurück zum Zitat Tustison, N.J., et al.: N4ITK: improved N3 bias correction. TMI 29(6), 1310–1320 (2010) Tustison, N.J., et al.: N4ITK: improved N3 bias correction. TMI 29(6), 1310–1320 (2010)
11.
Zurück zum Zitat Khalili, N., et al.: Automatic brain tissue segmentation in fetal MRI using convolutional neural networks. Magn. Reson. Imaging 64, 7–89 (2019)CrossRef Khalili, N., et al.: Automatic brain tissue segmentation in fetal MRI using convolutional neural networks. Magn. Reson. Imaging 64, 7–89 (2019)CrossRef
12.
Zurück zum Zitat Paschali, M., Conjeti, S., Navarro, F., Navab, N.: Generalizability vs. robustness: adversarial examples for medical imaging. In: MICCAI (2018) Paschali, M., Conjeti, S., Navarro, F., Navab, N.: Generalizability vs. robustness: adversarial examples for medical imaging. In: MICCAI (2018)
13.
14.
Zurück zum Zitat Goodfellow, I.J., Shlens, J., Szegedy, C.: Explaining and harnessing adversarial examples. In: ICLR (2015) Goodfellow, I.J., Shlens, J., Szegedy, C.: Explaining and harnessing adversarial examples. In: ICLR (2015)
15.
Zurück zum Zitat Madry, A., Makelov, A., Schmidt, L., Tsipras, D., Vladu, A.: Towards deep learning models resistant to adversarial attacks. In: ICLR, June 2017 Madry, A., Makelov, A., Schmidt, L., Tsipras, D., Vladu, A.: Towards deep learning models resistant to adversarial attacks. In: ICLR, June 2017
16.
Zurück zum Zitat Volpi, R., Namkoong, H., Sener, O., Duchi, J.C., Murino, V., Savarese, S.: Generalizing to unseen domains via adversarial data augmentation. In: NeurIPS, pp. 5339–5349 (2018) Volpi, R., Namkoong, H., Sener, O., Duchi, J.C., Murino, V., Savarese, S.: Generalizing to unseen domains via adversarial data augmentation. In: NeurIPS, pp. 5339–5349 (2018)
17.
Zurück zum Zitat Carlini, N., Wagner, D.A.: Towards evaluating the robustness of neural networks. In: 2017 IEEE Symposium on Security and Privacy, SP 2017, San Jose, CA, USA, 22–26 May 2017, pp. 39–57 (2017) Carlini, N., Wagner, D.A.: Towards evaluating the robustness of neural networks. In: 2017 IEEE Symposium on Security and Privacy, SP 2017, San Jose, CA, USA, 22–26 May 2017, pp. 39–57 (2017)
18.
Zurück zum Zitat Tramèr, F., Boneh, D.: Adversarial training and robustness for multiple perturbations. In: NIPS, April 2019 Tramèr, F., Boneh, D.: Adversarial training and robustness for multiple perturbations. In: NIPS, April 2019
19.
Zurück zum Zitat Miyato, T., Maeda, S.-I., Koyama, M., Ishii, S.: Virtual adversarial training: a regularization method for supervised and Semi-Supervised learning. In: TPAMI (2018) Miyato, T., Maeda, S.-I., Koyama, M., Ishii, S.: Virtual adversarial training: a regularization method for supervised and Semi-Supervised learning. In: TPAMI (2018)
20.
Zurück zum Zitat Paschali, M., Conjeti, S., Navarro, F., Navab, N.: Generalizability vs. robustness: adversarial examples for medical imaging. In: MICCAI, March 2018 Paschali, M., Conjeti, S., Navarro, F., Navab, N.: Generalizability vs. robustness: adversarial examples for medical imaging. In: MICCAI, March 2018
21.
Zurück zum Zitat Kanbak, C., Moosavi-Dezfooli, S.-M., Frossard, P.: Geometric robustness of deep networks: analysis and improvement. In: CVPR, pp. 4441–4449 (2018) Kanbak, C., Moosavi-Dezfooli, S.-M., Frossard, P.: Geometric robustness of deep networks: analysis and improvement. In: CVPR, pp. 4441–4449 (2018)
22.
Zurück zum Zitat Engstrom, L., Tran, B., Tsipras, D., Schmidt, L., Madry, A.: Exploring the landscape of spatial robustness. In: Chaudhuri, K., Salakhutdinov, R. (eds.) ICML, Proceedings of Machine Learning Research, vol. 97, pp. 1802–1811, Long Beach, California (2019). PMLR Engstrom, L., Tran, B., Tsipras, D., Schmidt, L., Madry, A.: Exploring the landscape of spatial robustness. In: Chaudhuri, K., Salakhutdinov, R. (eds.) ICML, Proceedings of Machine Learning Research, vol. 97, pp. 1802–1811, Long Beach, California (2019). PMLR
23.
Zurück zum Zitat Zeng, X., et al.: Adversarial attacks beyond the image space. In: CVPR, pp. 4302–4311 (2019) Zeng, X., et al.: Adversarial attacks beyond the image space. In: CVPR, pp. 4302–4311 (2019)
24.
Zurück zum Zitat Alaifari, R., Alberti, G.S., Gauksson, T.: Adef: an iterative algorithm to construct adversarial deformations. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, 6–9 May 2019 (2019) Alaifari, R., Alberti, G.S., Gauksson, T.: Adef: an iterative algorithm to construct adversarial deformations. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, 6–9 May 2019 (2019)
25.
Zurück zum Zitat Sled, J.G., Zijdenbos, A.P., Evans, A.C.: A nonparametric method for automatic correction of intensity nonuniformity in MRI data. IEEE Trans. Med. Imaging 17(1), 87–97 (1998)CrossRef Sled, J.G., Zijdenbos, A.P., Evans, A.C.: A nonparametric method for automatic correction of intensity nonuniformity in MRI data. IEEE Trans. Med. Imaging 17(1), 87–97 (1998)CrossRef
26.
Zurück zum Zitat Gallier, J., Gallier, J.H.: Curves and Surfaces in Geometric Modeling: Theory and Algorithms. Morgan Kaufmann, San Francisco (2000)MATH Gallier, J., Gallier, J.H.: Curves and Surfaces in Geometric Modeling: Theory and Algorithms. Morgan Kaufmann, San Francisco (2000)MATH
28.
Zurück zum Zitat Bernard, O., Lalande, A., Jodoin, P.-M.: Deep learning techniques for automatic MRI cardiac multi-structures segmentation and diagnosis: is the problem solved? TMI 0062(11), 2514–2525 (2018) Bernard, O., Lalande, A., Jodoin, P.-M.: Deep learning techniques for automatic MRI cardiac multi-structures segmentation and diagnosis: is the problem solved? TMI 0062(11), 2514–2525 (2018)
29.
Zurück zum Zitat Sandkühler, R., Jud, C., Andermatt, S., Cattin, P.C.: AirLab: autograd image registration laboratory. Arxiv (2018) Sandkühler, R., Jud, C., Andermatt, S., Cattin, P.C.: AirLab: autograd image registration laboratory. Arxiv (2018)
30.
Zurück zum Zitat Zhang, H., Cisse, M., Dauphin, Y.N., Lopez-Paz, D.: Mixup: beyond empirical risk minimization. In: ICLR (2018) Zhang, H., Cisse, M., Dauphin, Y.N., Lopez-Paz, D.: Mixup: beyond empirical risk minimization. In: ICLR (2018)
31.
Zurück zum Zitat Geirhos, R., Rubisch, P., Michaelis, C., Bethge, M., Wichmann, F.A., Brendel, W.: Imagenet-trained CNNs are biased towards texture; increasing shape bias improves accuracy and robustness. In: ICLR (2019) Geirhos, R., Rubisch, P., Michaelis, C., Bethge, M., Wichmann, F.A., Brendel, W.: Imagenet-trained CNNs are biased towards texture; increasing shape bias improves accuracy and robustness. In: ICLR (2019)
Metadaten
Titel
Realistic Adversarial Data Augmentation for MR Image Segmentation
verfasst von
Chen Chen
Chen Qin
Huaqi Qiu
Cheng Ouyang
Shuo Wang
Liang Chen
Giacomo Tarroni
Wenjia Bai
Daniel Rueckert
Copyright-Jahr
2020
DOI
https://doi.org/10.1007/978-3-030-59710-8_65

Premium Partner