Skip to main content
Erschienen in: Journal of Materials Engineering and Performance 3/2018

23.01.2018

Controlled High Filler Loading of Functionalized Al2O3-Filled Epoxy Composites for LED Thermal Management

verfasst von: Anithambigai Permal, Mutharasu Devarajan, Huong Ling Hung, Thomas Zahner, David Lacey, Kamarulazizi Ibrahim

Erschienen in: Journal of Materials Engineering and Performance | Ausgabe 3/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Thermal management in light-emitting diode (LED) has been extensively researched recently. This study is intended to develop an effective thermally conductive epoxy composite as thermal interface material (TIM) for headlamp LEDs. Silane-functionalized aluminum oxide (Al2O3) powder of different average particle sizes (44 and 10 µm) was studied for its feasibility as filler at its maximum loading. A detailed comparison of three different methods of particle dispersions, hand-mix, speed-mix and calendaring process (3-roll mill), has been reported. The dispersion of Al2O3 particles, the thermal conductivity and thermal degradation characteristics of the composites were investigated and explained in detail. At 75 wt.% filler loading, 10 and 44 µm Al2O3 achieved composite thermal conductivities of 1.13 and 2.08 W/mK, respectively, which is approximately 528 and 1055% of enhancement with respect to neat epoxy. The package-level thermal performance of the LED employing the Al2O3-filled TIMs was carried out using thermal transient analysis. The experimental junction-to-ambient thermal resistances (RthJ-A) achieved were 6.65, 7.24, and 8.63 K/W for Al2O3_44µm, Al2O3_10µm and neat epoxy, respectively. The results revealed that the Al2O3_44µm fillers-filled composite performed better in both material-level and package-level thermal characteristics.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat E.F. Schubert, T. Gessmann and J.K. Kim, Light Emitting Diodes, Kirk-Othmer Encyclopedia of Chemical Technology, Wiley, London, 2005 E.F. Schubert, T. Gessmann and J.K. Kim, Light Emitting Diodes, Kirk-Othmer Encyclopedia of Chemical Technology, Wiley, London, 2005
2.
Zurück zum Zitat N. Han, E. Jung, M. Han, B.D. Ryu, K.B. Ko, Y.J. Park, T.V. Cuong, J. Cho, H. Kim and C.H. Hong, Reduced Junction Temperature and Enhanced Performance of High Power Light-Emitting Diodes Using Reduced Graphene Oxide Pattern, J. Phys. D Appl. Phys., 2015, 48, p 265102–265110CrossRef N. Han, E. Jung, M. Han, B.D. Ryu, K.B. Ko, Y.J. Park, T.V. Cuong, J. Cho, H. Kim and C.H. Hong, Reduced Junction Temperature and Enhanced Performance of High Power Light-Emitting Diodes Using Reduced Graphene Oxide Pattern, J. Phys. D Appl. Phys., 2015, 48, p 265102–265110CrossRef
3.
Zurück zum Zitat J. Wang, X.J. Zhao, Y.X. Cai, C. Zhang and W.W. Bao, Experimental Study on the Thermal Management of High-Power LED Headlight Cooling Device Integrated with Thermoelectric Cooler Package, Energy Convers. Manage., 2015, 101, p 532–540CrossRef J. Wang, X.J. Zhao, Y.X. Cai, C. Zhang and W.W. Bao, Experimental Study on the Thermal Management of High-Power LED Headlight Cooling Device Integrated with Thermoelectric Cooler Package, Energy Convers. Manage., 2015, 101, p 532–540CrossRef
4.
Zurück zum Zitat F. Daiminger, M. Gruber, C. Dendorfer and T. Zahner, Experimental Investigations on The Offset Correction of Transient Cooling Curves of Light Emitting Diodes Based on JESD51-14 and Simple Semi-Empirical Approximations Microelectron. J, 2015, 46, p 1208–1215 F. Daiminger, M. Gruber, C. Dendorfer and T. Zahner, Experimental Investigations on The Offset Correction of Transient Cooling Curves of Light Emitting Diodes Based on JESD51-14 and Simple Semi-Empirical Approximations Microelectron. J, 2015, 46, p 1208–1215
5.
Zurück zum Zitat X. Luo, Y. Zhang, C. Zande´n, M. Murugesan, Y. Cao, L. Ye and J. Liu, Novel Thermal Interface Materials: Boron Nitride Nanofiber and Indium Composites for Electronics Heat Dissipation Applications, J Mater Sci: Mater Electron, 2014, 25, 2333–2338 X. Luo, Y. Zhang, C. Zande´n, M. Murugesan, Y. Cao, L. Ye and J. Liu, Novel Thermal Interface Materials: Boron Nitride Nanofiber and Indium Composites for Electronics Heat Dissipation Applications, J Mater Sci: Mater Electron, 2014, 25, 2333–2338
6.
Zurück zum Zitat J. Idris and T.W. Hon, High-Performance Carbon Nanotubes Thermal Interface Materials, Electronics Manufacturing Technology Conference (IEMT), 2014 IEEE 36th, International, 2014, 1–5, p 11–13 J. Idris and T.W. Hon, High-Performance Carbon Nanotubes Thermal Interface Materials, Electronics Manufacturing Technology Conference (IEMT), 2014 IEEE 36th, International, 2014, 1–5, p 11–13
7.
Zurück zum Zitat J.H. Yu and G. Cennini, Improving Thermal Conductivity of Polymer Composites in Embedded LEDs Systems, Microelectron. J., 2014, 45, p 1829–1833CrossRef J.H. Yu and G. Cennini, Improving Thermal Conductivity of Polymer Composites in Embedded LEDs Systems, Microelectron. J., 2014, 45, p 1829–1833CrossRef
8.
Zurück zum Zitat P. Zhang, Q. Li and Y.M. Xuan, Thermal Contact Resistance of Epoxy Composites Incorporated With Nano-Copper Particles and The Multi-Walled Carbon Nanotubes, Compos. A, 2014, 57, p 1–7CrossRef P. Zhang, Q. Li and Y.M. Xuan, Thermal Contact Resistance of Epoxy Composites Incorporated With Nano-Copper Particles and The Multi-Walled Carbon Nanotubes, Compos. A, 2014, 57, p 1–7CrossRef
9.
Zurück zum Zitat R. Kothari, C.T. Sun, R. Dinwiddie and H. Wang, Experimental and Numerical Study of The Effective Thermal Conductivity of Nano Composites With Thermal Boundary Resistance, Int. J. Heat Mass Transf., 2013, 66, p 823–829CrossRef R. Kothari, C.T. Sun, R. Dinwiddie and H. Wang, Experimental and Numerical Study of The Effective Thermal Conductivity of Nano Composites With Thermal Boundary Resistance, Int. J. Heat Mass Transf., 2013, 66, p 823–829CrossRef
10.
Zurück zum Zitat S.H. Xie, B.K. Zhu, J.B. Li, X.Z. Wei and Z.K. Xu, Preparation and Properties of Polyimide/Aluminum Nitride, Compos. Polym. Test, 2004, 23, p 797–801CrossRef S.H. Xie, B.K. Zhu, J.B. Li, X.Z. Wei and Z.K. Xu, Preparation and Properties of Polyimide/Aluminum Nitride, Compos. Polym. Test, 2004, 23, p 797–801CrossRef
11.
Zurück zum Zitat X.J. Tian, M.E. Itkis and R.C. Haddon, Application of Hybrid Fillers for Improving the Through-Plane Heat Transport in Graphite Nanoplatelet-Based Thermal Interface Layers, Sci. Rep., 2015, 5, p 13108CrossRef X.J. Tian, M.E. Itkis and R.C. Haddon, Application of Hybrid Fillers for Improving the Through-Plane Heat Transport in Graphite Nanoplatelet-Based Thermal Interface Layers, Sci. Rep., 2015, 5, p 13108CrossRef
12.
Zurück zum Zitat M.T. Sebastian and H. Jantunen, Polymer-Ceramic Composites of 0–3 Connectivity for Circuits in Electronics: A Review, Int. J. Appl. Ceram. Technol., 2010, 7, p 415–434 M.T. Sebastian and H. Jantunen, Polymer-Ceramic Composites of 0–3 Connectivity for Circuits in Electronics: A Review, Int. J. Appl. Ceram. Technol., 2010, 7, p 415–434
13.
Zurück zum Zitat A. Boudenne, L. Ibos, M. Fois, J.C. Majesté and E. Géhin, Electrical and Thermal Behaviour of Polypropylene Filled with Copper Particles, Compos. Part A, 2005, 36, p 1545–1554CrossRef A. Boudenne, L. Ibos, M. Fois, J.C. Majesté and E. Géhin, Electrical and Thermal Behaviour of Polypropylene Filled with Copper Particles, Compos. Part A, 2005, 36, p 1545–1554CrossRef
14.
Zurück zum Zitat P. Anithambigai S. Shanmugan, D. Mutharasu T. Zahner and D. Lacey, Study on Thermal Performance of High Power LED Employing Aluminum Filled Epoxy Composite as Thermal Interface Material, Microelectron J, 2014, 45, p 1726–1733 P. Anithambigai S. Shanmugan, D. Mutharasu T. Zahner and D. Lacey, Study on Thermal Performance of High Power LED Employing Aluminum Filled Epoxy Composite as Thermal Interface Material, Microelectron J, 2014, 45, p 1726–1733
15.
Zurück zum Zitat Y.H. Yu, C.C.M. Ma, C.C. Teng, Y.L. Huang, H.W. Tien, S.H. Lee and I. Wang, J. Enhanced Thermal and Mechanical Properties of Epoxy Composites Filled with Silver Nanowires and Nanoparticles, Taiwan Ins. Chem. E, 2013, 44, p 654–659 Y.H. Yu, C.C.M. Ma, C.C. Teng, Y.L. Huang, H.W. Tien, S.H. Lee and I. Wang, J. Enhanced Thermal and Mechanical Properties of Epoxy Composites Filled with Silver Nanowires and Nanoparticles, Taiwan Ins. Chem. E, 2013, 44, p 654–659
16.
Zurück zum Zitat W. Qiao, H. Bao, X. Li, S. Jin and Z. Gu, Research on Electrical Conductive Adhesives Filled with Mixed Filler, Int. J. Adhes. Adhes., 2014, 48, p 159–163CrossRef W. Qiao, H. Bao, X. Li, S. Jin and Z. Gu, Research on Electrical Conductive Adhesives Filled with Mixed Filler, Int. J. Adhes. Adhes., 2014, 48, p 159–163CrossRef
17.
Zurück zum Zitat D.D.L. Chung, Appl. Materials for thermal conduction, Therm. Eng., 2001, 21, p 1593–1605CrossRef D.D.L. Chung, Appl. Materials for thermal conduction, Therm. Eng., 2001, 21, p 1593–1605CrossRef
18.
Zurück zum Zitat F. Gardea, M. Naraghi and D. Lagoudas, Effect of Thermal Interface on Heat Flow in Carbon Nanofiber Composites, ACS Appl. Mater. Interfaces, 2014, 6, p 1061–1072CrossRef F. Gardea, M. Naraghi and D. Lagoudas, Effect of Thermal Interface on Heat Flow in Carbon Nanofiber Composites, ACS Appl. Mater. Interfaces, 2014, 6, p 1061–1072CrossRef
19.
Zurück zum Zitat M.A. Raza, A.V.K. Westwood and C. Stirling, Mater. Effect of Processing Technique on the Transport and Mechanical Properties of Graphite Nanoplatelet/Rubbery Epoxy Composites for Thermal Interface Applications, Chem. Phys., 2012, 132, p 63–73 M.A. Raza, A.V.K. Westwood and C. Stirling, Mater. Effect of Processing Technique on the Transport and Mechanical Properties of Graphite Nanoplatelet/Rubbery Epoxy Composites for Thermal Interface Applications, Chem. Phys., 2012, 132, p 63–73
20.
Zurück zum Zitat P.C. Ma, N.A. Siddiqui, G. Marom and J.K. Kim, Dispersion and Functionalization of Carbon Nanotubes for Polymer-Based Nanocomposites: A Review, Compos. Part A, 2010, 41, p 1345–1367CrossRef P.C. Ma, N.A. Siddiqui, G. Marom and J.K. Kim, Dispersion and Functionalization of Carbon Nanotubes for Polymer-Based Nanocomposites: A Review, Compos. Part A, 2010, 41, p 1345–1367CrossRef
21.
Zurück zum Zitat A. Agrawal and A. Satapathy, Experimental Investigation on Micro-Sized Aluminium Oxide Reinforced Epoxy Composites for Microelectronic Applications, Proc. Mater. Sci., 2014, 5, p 517–526CrossRef A. Agrawal and A. Satapathy, Experimental Investigation on Micro-Sized Aluminium Oxide Reinforced Epoxy Composites for Microelectronic Applications, Proc. Mater. Sci., 2014, 5, p 517–526CrossRef
22.
Zurück zum Zitat L.C. Sim, S.R. Ramanan, H. Ismail, K.N. Seetharamu and T.J. Goh, Thermal Characterization of Al2O3 and ZnO Reinforced Silicone Rubber as Thermal Pads for Heat Dissipation Purposes, Thermochim. Act, 2005, 430, p 155–165CrossRef L.C. Sim, S.R. Ramanan, H. Ismail, K.N. Seetharamu and T.J. Goh, Thermal Characterization of Al2O3 and ZnO Reinforced Silicone Rubber as Thermal Pads for Heat Dissipation Purposes, Thermochim. Act, 2005, 430, p 155–165CrossRef
23.
Zurück zum Zitat C.H. Chen, J.Y. Jian and F.S. Yen, Preparation and Characterization of Epoxy/Γ-Aluminum Oxide Nanocomposites, Compos. Part A, 2009, 40, p 463–468CrossRef C.H. Chen, J.Y. Jian and F.S. Yen, Preparation and Characterization of Epoxy/Γ-Aluminum Oxide Nanocomposites, Compos. Part A, 2009, 40, p 463–468CrossRef
24.
Zurück zum Zitat J.F. Fu, L.Y. Shi, Q.D. Zhong, Y. Chen and L.Y. Chen, Thermally Conductive and Electrically Insulative Nanocomposites Based on Hyperbranched Epoxy and Nano-Al2O3 particles modified epoxy resin Polym, Adv. Technol., 2011, 22, p 1032–1041CrossRef J.F. Fu, L.Y. Shi, Q.D. Zhong, Y. Chen and L.Y. Chen, Thermally Conductive and Electrically Insulative Nanocomposites Based on Hyperbranched Epoxy and Nano-Al2O3 particles modified epoxy resin Polym, Adv. Technol., 2011, 22, p 1032–1041CrossRef
25.
Zurück zum Zitat B. Wetzel, P. Rosso, F. Haupert and K. Friedrich, Epoxy Nanocomposites—Fracture and Toughening Mechanisms, Eng. Fract. Mech., 2006, 73, p 2375–2398CrossRef B. Wetzel, P. Rosso, F. Haupert and K. Friedrich, Epoxy Nanocomposites—Fracture and Toughening Mechanisms, Eng. Fract. Mech., 2006, 73, p 2375–2398CrossRef
26.
Zurück zum Zitat A. Omrani and A.A. Rostami, Understanding the Effect of Nano-Al2O3 Addition Upon the Properties of Epoxy-Based Hybrid, Compos. Mater. Sci. Eng. A, 2009, 517, p 185–190CrossRef A. Omrani and A.A. Rostami, Understanding the Effect of Nano-Al2O3 Addition Upon the Properties of Epoxy-Based Hybrid, Compos. Mater. Sci. Eng. A, 2009, 517, p 185–190CrossRef
27.
Zurück zum Zitat P. Anithambigai, S. Shanmugan, D. Mutharasu and K. Ibrahim, Heat Transfer in High Power LED with Thermally Conductive Particles Filled Epoxy Composite as Thermal Interface Material for System Level Analysis, 5th Asia Symposium on Quality Electronic Design, 2013, p 339–341 P. Anithambigai, S. Shanmugan, D. Mutharasu and K. Ibrahim, Heat Transfer in High Power LED with Thermally Conductive Particles Filled Epoxy Composite as Thermal Interface Material for System Level Analysis, 5th Asia Symposium on Quality Electronic Design, 2013, p 339–341
28.
Zurück zum Zitat Y. Yao, X. Zeng, K. Guo, R. Sun and J.B. Xu, The Effect of Interfacial State on The Thermal Conductivity of Functionalized Al2O3 Filled Glass Fibers Reinforced Polymer Composites, Compos. Part A, 2015, 69, p 49–55CrossRef Y. Yao, X. Zeng, K. Guo, R. Sun and J.B. Xu, The Effect of Interfacial State on The Thermal Conductivity of Functionalized Al2O3 Filled Glass Fibers Reinforced Polymer Composites, Compos. Part A, 2015, 69, p 49–55CrossRef
29.
Zurück zum Zitat M.R. Karim, M.A. Rahman, M.A.J. Miah, H. Ahmad, M. Yanagisawa and M. Ito, Synthesis of γ-Alumina Particles and Surface Characterization, Open Colloid Sci. J., 2011, 4, p 32–36CrossRef M.R. Karim, M.A. Rahman, M.A.J. Miah, H. Ahmad, M. Yanagisawa and M. Ito, Synthesis of γ-Alumina Particles and Surface Characterization, Open Colloid Sci. J., 2011, 4, p 32–36CrossRef
30.
Zurück zum Zitat L.A.S.A. Prado, S. Montira, G. Marcos, T. Ana Barros and S. Karl, Surface Modification of Alumina Nanoparticles with Silane Coupling Agents, J. Braz. Chem. Soc., 2010, 21, p 2238–2245CrossRef L.A.S.A. Prado, S. Montira, G. Marcos, T. Ana Barros and S. Karl, Surface Modification of Alumina Nanoparticles with Silane Coupling Agents, J. Braz. Chem. Soc., 2010, 21, p 2238–2245CrossRef
31.
Zurück zum Zitat Z. Lin, A. Mcnamara, Y. Liu, K.S. Moon and C.P. Wong, Exfoliated Hexagonal Boron Nitride-Based Polymer Nanocomposite with Enhanced Thermal Conductivity for Electronic Encapsulation, Compos. Sci. Technol., 2014, 90, p 123–128CrossRef Z. Lin, A. Mcnamara, Y. Liu, K.S. Moon and C.P. Wong, Exfoliated Hexagonal Boron Nitride-Based Polymer Nanocomposite with Enhanced Thermal Conductivity for Electronic Encapsulation, Compos. Sci. Technol., 2014, 90, p 123–128CrossRef
32.
Zurück zum Zitat S. Kemaloglu, G. Ozkoc and A. Aytac, Properties of Thermally Conductive Micro And Nano Size Boron Nitride Reinforced Silicon Rubber Composites Thermochim, Act, 2010, 499, p 40–47 S. Kemaloglu, G. Ozkoc and A. Aytac, Properties of Thermally Conductive Micro And Nano Size Boron Nitride Reinforced Silicon Rubber Composites Thermochim, Act, 2010, 499, p 40–47
33.
Zurück zum Zitat W.H. Yuan, Q.Q. Xiao, L. Li and T. Xu, Thermal Conductivity of Epoxy Adhesive Enhanced by Hybrid Grapheme Oxide/AlN Particles, Appl. Therm. Eng., 2016, 106, p 1067–1074CrossRef W.H. Yuan, Q.Q. Xiao, L. Li and T. Xu, Thermal Conductivity of Epoxy Adhesive Enhanced by Hybrid Grapheme Oxide/AlN Particles, Appl. Therm. Eng., 2016, 106, p 1067–1074CrossRef
34.
Zurück zum Zitat H. Babaei, P. Keblinski and J.M. Khodadadi, Improvement in Thermal Conductivity of Paraffin by Adding High Aspect-Ratio Carbon-Based Nano-Fillers, Phys. Lett. A, 2013, 377, p 1358–1361CrossRef H. Babaei, P. Keblinski and J.M. Khodadadi, Improvement in Thermal Conductivity of Paraffin by Adding High Aspect-Ratio Carbon-Based Nano-Fillers, Phys. Lett. A, 2013, 377, p 1358–1361CrossRef
35.
Zurück zum Zitat E.C. Guyer and D.L. Brownell, handbook of Applied Thermal Design, Castleton New York, 1999. E.C. Guyer and D.L. Brownell, handbook of Applied Thermal Design, Castleton New York, 1999.
36.
Zurück zum Zitat T. Evgin and I.H. Tavman, Thermal Conductivity of Aluminum Particle Filled High Density Polyethylene Composites—Particle Size Effect, Adv. Mater. Res., 2015, 1114, p 44–49CrossRef T. Evgin and I.H. Tavman, Thermal Conductivity of Aluminum Particle Filled High Density Polyethylene Composites—Particle Size Effect, Adv. Mater. Res., 2015, 1114, p 44–49CrossRef
37.
Zurück zum Zitat G.W. Lee, M. Park, J.K. Kim, J.I. Lee and H.G. Yoon, Enhanced Thermal Conductivity of Polymer Composites Filled with Hybrid Filler, Compos. Part A, 2005, 37, p 727–734CrossRef G.W. Lee, M. Park, J.K. Kim, J.I. Lee and H.G. Yoon, Enhanced Thermal Conductivity of Polymer Composites Filled with Hybrid Filler, Compos. Part A, 2005, 37, p 727–734CrossRef
38.
Zurück zum Zitat M.P. Beck, Y. Yuan, P. Warrier and A.S. Teja, The Effect of Particle Size on the Thermal Conductivity of Alumina Nanofluids, J. Nanopart. Res., 2009, 11, p 1129–1136CrossRef M.P. Beck, Y. Yuan, P. Warrier and A.S. Teja, The Effect of Particle Size on the Thermal Conductivity of Alumina Nanofluids, J. Nanopart. Res., 2009, 11, p 1129–1136CrossRef
39.
Zurück zum Zitat A.G. Every, Y. Tzou, D.P.H. Hasselman and R. Raj, The Effect of Particle Size on the Thermal Conductivity of Zns/Diamond Composites Acta Metall Mater, 129, 40, 123–129 A.G. Every, Y. Tzou, D.P.H. Hasselman and R. Raj, The Effect of Particle Size on the Thermal Conductivity of Zns/Diamond Composites Acta Metall Mater, 129, 40, 123–129
40.
Zurück zum Zitat A. Agrawal and A. Satapathy, Effects of Aluminium Nitride Inclusions on Thermal and Electrical Properties of Epoxy and Polypropylene: An Experimental Investigation, Compos. Part A, 2014, 63, p 51–58CrossRef A. Agrawal and A. Satapathy, Effects of Aluminium Nitride Inclusions on Thermal and Electrical Properties of Epoxy and Polypropylene: An Experimental Investigation, Compos. Part A, 2014, 63, p 51–58CrossRef
42.
Zurück zum Zitat S. Chandrasekaran, C. Seidel and K. Schulte, Preparation and Characterization of Graphite Nano-Platelet (GNP)/Epoxy Nano-Composite: Mechanical, Electrical and Thermal Properties, Eur. Polym. J, 2013, 49, p 3878–3888CrossRef S. Chandrasekaran, C. Seidel and K. Schulte, Preparation and Characterization of Graphite Nano-Platelet (GNP)/Epoxy Nano-Composite: Mechanical, Electrical and Thermal Properties, Eur. Polym. J, 2013, 49, p 3878–3888CrossRef
43.
Zurück zum Zitat F.H. Gojny, M.H.G. Wichmann, U. Kopke, B. Fiedler and K. Schulte, Carbon nanotube-Reinforced Epoxy-Composites: Enhanced Stiffness and Fracture Toughness at Low Nanotube Content, Compos. Sci. Technol, 2004, 64, p 2363–2371CrossRef F.H. Gojny, M.H.G. Wichmann, U. Kopke, B. Fiedler and K. Schulte, Carbon nanotube-Reinforced Epoxy-Composites: Enhanced Stiffness and Fracture Toughness at Low Nanotube Content, Compos. Sci. Technol, 2004, 64, p 2363–2371CrossRef
44.
Zurück zum Zitat P.C. Ma, N.A. Siddiqui, G. Marom and J.K. Kim, Dispersion and Functionalization of Carbon Nanotubes for Polymer-Based Nanocomposites: A Review, Compos. Part A, 2010, 41, p 1345–1367CrossRef P.C. Ma, N.A. Siddiqui, G. Marom and J.K. Kim, Dispersion and Functionalization of Carbon Nanotubes for Polymer-Based Nanocomposites: A Review, Compos. Part A, 2010, 41, p 1345–1367CrossRef
45.
Zurück zum Zitat H.C. Cheng, W.H. Chen and H.F. Cheng, Theoretical and Experimental Characterization of Heat Dissipation in a Board-Level Microelectronic Component, Appl. Therm. Eng., 2008, 28, p 575–588CrossRef H.C. Cheng, W.H. Chen and H.F. Cheng, Theoretical and Experimental Characterization of Heat Dissipation in a Board-Level Microelectronic Component, Appl. Therm. Eng., 2008, 28, p 575–588CrossRef
Metadaten
Titel
Controlled High Filler Loading of Functionalized Al2O3-Filled Epoxy Composites for LED Thermal Management
verfasst von
Anithambigai Permal
Mutharasu Devarajan
Huong Ling Hung
Thomas Zahner
David Lacey
Kamarulazizi Ibrahim
Publikationsdatum
23.01.2018
Verlag
Springer US
Erschienen in
Journal of Materials Engineering and Performance / Ausgabe 3/2018
Print ISSN: 1059-9495
Elektronische ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-018-3151-y

Weitere Artikel der Ausgabe 3/2018

Journal of Materials Engineering and Performance 3/2018 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.