Skip to main content
Erschienen in: Wireless Personal Communications 2/2018

18.04.2018

Controlling Congestion in Wireless Sensor Networks Through Imperialist Competitive Algorithm

verfasst von: Hasan Parsavand, Ali Ghaffari

Erschienen in: Wireless Personal Communications | Ausgabe 2/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Congestion control is one of the most important in wireless sensor networks (WSNs) due to inherent limited resources. In WSNs congestion leads to the loss of information and the limited available energy of the nodes. Hence, it is essential that congestion be controlled. In this paper, a method is proposed for preventing the occurrence of congestion among sensor nodes. The proposed method used clustering and hierarchical structure for producing a network topology. That is, data is firstly distributed in the environment; then, according to Imperialist Competitive Algorithm (ICA) and the available parameters, clusters are produced. After the establishment of clusters, nodes known as master nodes are selected for each of the clusters which are responsible for receiving information from nodes within the cluster and also transmitting information to the sink node. It should be noted that this procedure is carried out stepwise. In case congestion occurs in any of the target nodes, using the proposed solution, an alternative route is considered for the respective node. Simulation results in Matlab software indicated that the proposed method was able to optimize packet delivery rate, throughput and reduce energy consumption.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Alemdar, H., & Ersoy, C. (2010). Wireless sensor networks for healthcare: A survey. Computer Networks, 54, 2688–2710.CrossRef Alemdar, H., & Ersoy, C. (2010). Wireless sensor networks for healthcare: A survey. Computer Networks, 54, 2688–2710.CrossRef
2.
Zurück zum Zitat Darwish, A., & Hassanien, A. E. (2011). Wearable and implantable wireless sensor network solutions for healthcare monitoring. Sensors, 11, 5561–5595.CrossRef Darwish, A., & Hassanien, A. E. (2011). Wearable and implantable wireless sensor network solutions for healthcare monitoring. Sensors, 11, 5561–5595.CrossRef
3.
Zurück zum Zitat Chen, W.-P., Hou, J. C., & Sha, L. (2004). Dynamic clustering for acoustic target tracking in wireless sensor networks. IEEE Transactions on Mobile Computing, 3, 258–271.CrossRef Chen, W.-P., Hou, J. C., & Sha, L. (2004). Dynamic clustering for acoustic target tracking in wireless sensor networks. IEEE Transactions on Mobile Computing, 3, 258–271.CrossRef
4.
Zurück zum Zitat Wang, X., Ma, J., Wang, S., & Bi, D. (2010). Distributed energy optimization for target tracking in wireless sensor networks. IEEE Transactions on Mobile Computing, 9, 73–86.CrossRef Wang, X., Ma, J., Wang, S., & Bi, D. (2010). Distributed energy optimization for target tracking in wireless sensor networks. IEEE Transactions on Mobile Computing, 9, 73–86.CrossRef
5.
Zurück zum Zitat Polastre, J., Szewczyk, R., Mainwaring, A., Culler, D., & Anderson, J. (2004). Analysis of wireless sensor networks for habitat monitoring. wireless sensor networks (pp. 399–423). Berlin: Springer. Polastre, J., Szewczyk, R., Mainwaring, A., Culler, D., & Anderson, J. (2004). Analysis of wireless sensor networks for habitat monitoring. wireless sensor networks (pp. 399–423). Berlin: Springer.
6.
Zurück zum Zitat Shen, C.-C., Plishker, W. L., Ko, D.-I., Bhattacharyya, S. S., & Goldsman, N. (2010). Energy-driven distribution of signal processing applications across wireless sensor networks. ACM Transactions on Sensor Networks (TOSN), 6, 111–141.CrossRef Shen, C.-C., Plishker, W. L., Ko, D.-I., Bhattacharyya, S. S., & Goldsman, N. (2010). Energy-driven distribution of signal processing applications across wireless sensor networks. ACM Transactions on Sensor Networks (TOSN), 6, 111–141.CrossRef
7.
Zurück zum Zitat Xie, S., & Wang, Y. (2014). Construction of tree network with limited delivery latency in homogeneous wireless sensor networks. Wireless Personal Communications, 78, 231–246.CrossRef Xie, S., & Wang, Y. (2014). Construction of tree network with limited delivery latency in homogeneous wireless sensor networks. Wireless Personal Communications, 78, 231–246.CrossRef
8.
Zurück zum Zitat Ghaffari, A., & Rahmani, A. (2008). Fault tolerant model for data dissemination in wireless sensor networks. In International symposium on information technology, 2008. ITSim 2008, pp. 1–8. Ghaffari, A., & Rahmani, A. (2008). Fault tolerant model for data dissemination in wireless sensor networks. In International symposium on information technology, 2008. ITSim 2008, pp. 1–8.
9.
Zurück zum Zitat Mohammadi, R., & Ghaffari, A. (2015). Optimizing reliability through network coding in wireless multimedia sensor networks. Indian Journal of Science and Technology, 8, 834–841.CrossRef Mohammadi, R., & Ghaffari, A. (2015). Optimizing reliability through network coding in wireless multimedia sensor networks. Indian Journal of Science and Technology, 8, 834–841.CrossRef
10.
Zurück zum Zitat Akyildiz, I. F., Su, W., Sankarasubramaniam, Y., & Cayirci, E. (2002). Wireless sensor networks: a survey. Computer Networks, 38, 393–422.CrossRef Akyildiz, I. F., Su, W., Sankarasubramaniam, Y., & Cayirci, E. (2002). Wireless sensor networks: a survey. Computer Networks, 38, 393–422.CrossRef
11.
Zurück zum Zitat Ghaffari, A. (2014). An energy efficient routing protocol for wireless sensor networks using A-star algorithm. Journal of Applied Research and Technology, 12, 815–822.CrossRef Ghaffari, A. (2014). An energy efficient routing protocol for wireless sensor networks using A-star algorithm. Journal of Applied Research and Technology, 12, 815–822.CrossRef
12.
Zurück zum Zitat Mohsenifard, E., & Ghaffari, A. (2016). Data aggregation tree structure in wireless sensor networks using cuckoo optimization algorithm. Information Systems & Telecommunication, 4, 182–190. Mohsenifard, E., & Ghaffari, A. (2016). Data aggregation tree structure in wireless sensor networks using cuckoo optimization algorithm. Information Systems & Telecommunication, 4, 182–190.
13.
Zurück zum Zitat Ghaffari, A. (2016). Real-time routing algorithm for mobile ad hoc networks using reinforcement learning and heuristic algorithms. Wireless Networks, 23, 703–714.CrossRef Ghaffari, A. (2016). Real-time routing algorithm for mobile ad hoc networks using reinforcement learning and heuristic algorithms. Wireless Networks, 23, 703–714.CrossRef
14.
Zurück zum Zitat Ghaffari, A. (2015). Congestion control mechanisms in wireless sensor networks: A survey. Journal of Network and Computer Applications, 52, 101–115.CrossRef Ghaffari, A. (2015). Congestion control mechanisms in wireless sensor networks: A survey. Journal of Network and Computer Applications, 52, 101–115.CrossRef
15.
Zurück zum Zitat Wang, C., Li, B., Sohraby, K., Daneshmand, M., & Hu, Y. (2007). Upstream congestion control in wireless sensor networks through cross-layer optimization. IEEE Journal on Selected Areas in Communications, 25, 786–795.CrossRef Wang, C., Li, B., Sohraby, K., Daneshmand, M., & Hu, Y. (2007). Upstream congestion control in wireless sensor networks through cross-layer optimization. IEEE Journal on Selected Areas in Communications, 25, 786–795.CrossRef
16.
Zurück zum Zitat Sergiou, C., Vassiliou, V., & Paphitis, A. (2013). Hierarchical tree alternative path (HTAP) algorithm for congestion control in wireless sensor networks. Ad Hoc Networks, 11, 257–272.CrossRef Sergiou, C., Vassiliou, V., & Paphitis, A. (2013). Hierarchical tree alternative path (HTAP) algorithm for congestion control in wireless sensor networks. Ad Hoc Networks, 11, 257–272.CrossRef
17.
Zurück zum Zitat Sonmez, C., Incel, O. D., Isik, S., Donmez, M. Y., & Ersoy, C. (2014). Fuzzy-based congestion control for wireless multimedia sensor networks. EURASIP Journal on Wireless Communications and Networking, 2014, 1–17.CrossRef Sonmez, C., Incel, O. D., Isik, S., Donmez, M. Y., & Ersoy, C. (2014). Fuzzy-based congestion control for wireless multimedia sensor networks. EURASIP Journal on Wireless Communications and Networking, 2014, 1–17.CrossRef
18.
Zurück zum Zitat Antoniou, P., Pitsillides, A., Blackwell, T., Engelbrecht, A., & Michael, L. (2013). Congestion control in wireless sensor networks based on bird flocking behavior. Computer Networks, 57, 1167–1191.CrossRef Antoniou, P., Pitsillides, A., Blackwell, T., Engelbrecht, A., & Michael, L. (2013). Congestion control in wireless sensor networks based on bird flocking behavior. Computer Networks, 57, 1167–1191.CrossRef
19.
Zurück zum Zitat Jan, M. A., Nanda, P., He, X., & Liu, R. P. (2014). PASCCC: Priority-based application-specific congestion control clustering protocol. Computer Networks, 74, 92–102.CrossRef Jan, M. A., Nanda, P., He, X., & Liu, R. P. (2014). PASCCC: Priority-based application-specific congestion control clustering protocol. Computer Networks, 74, 92–102.CrossRef
20.
Zurück zum Zitat Sergiou, C., Vassiliou, V., & Paphitis, A. (2014). Congestion control in wireless sensor networks through dynamic alternative path selection. Computer Networks, 75, 226–238.CrossRef Sergiou, C., Vassiliou, V., & Paphitis, A. (2014). Congestion control in wireless sensor networks through dynamic alternative path selection. Computer Networks, 75, 226–238.CrossRef
21.
Zurück zum Zitat Aghdam, S. M., Khansari, M., Rabiee, H. R., & Salehi, M. (2014). WCCP: A congestion control protocol for wireless multimedia communication in sensor networks. Ad Hoc Networks, 13, 516–534.CrossRef Aghdam, S. M., Khansari, M., Rabiee, H. R., & Salehi, M. (2014). WCCP: A congestion control protocol for wireless multimedia communication in sensor networks. Ad Hoc Networks, 13, 516–534.CrossRef
22.
Zurück zum Zitat Kafi, M. A., Ben-Othman, J., Ouadjaout, A., Bagaa, M., & Badache, N. (2016). REFIACC: Reliable, efficient, fair and interference-aware congestion control protocol for wireless sensor networks. Computer Communications, 101, 1–11.CrossRef Kafi, M. A., Ben-Othman, J., Ouadjaout, A., Bagaa, M., & Badache, N. (2016). REFIACC: Reliable, efficient, fair and interference-aware congestion control protocol for wireless sensor networks. Computer Communications, 101, 1–11.CrossRef
23.
Zurück zum Zitat Yaghmaee, M. H., Bahalgardi, N. F., & Adjeroh, D. (2013). A prioritization based congestion control protocol for healthcare monitoring application in wireless sensor networks. Wireless Personal Communications, 72, 2605–2631.CrossRef Yaghmaee, M. H., Bahalgardi, N. F., & Adjeroh, D. (2013). A prioritization based congestion control protocol for healthcare monitoring application in wireless sensor networks. Wireless Personal Communications, 72, 2605–2631.CrossRef
24.
Zurück zum Zitat Lee, J.-H. (2013). A traffic-aware energy efficient scheme for WSN employing an adaptable wakeup period. Wireless Personal Communications, 71, 1879–1914.CrossRef Lee, J.-H. (2013). A traffic-aware energy efficient scheme for WSN employing an adaptable wakeup period. Wireless Personal Communications, 71, 1879–1914.CrossRef
25.
Zurück zum Zitat Farzaneh, N., & Yaghmaee, M. H. (2015). An adaptive competitive resource control protocol for alleviating congestion in wireless sensor networks: An evolutionary game theory approach. Wireless Personal Communications, 82, 123–142.CrossRef Farzaneh, N., & Yaghmaee, M. H. (2015). An adaptive competitive resource control protocol for alleviating congestion in wireless sensor networks: An evolutionary game theory approach. Wireless Personal Communications, 82, 123–142.CrossRef
26.
Zurück zum Zitat Ding, W., Tang, L., & Feng, S. (2015). Traffic-aware and energy-efficient routing algorithm for wireless sensor networks. Wireless Personal Communications, 85, 2669–2686.CrossRef Ding, W., Tang, L., & Feng, S. (2015). Traffic-aware and energy-efficient routing algorithm for wireless sensor networks. Wireless Personal Communications, 85, 2669–2686.CrossRef
27.
Zurück zum Zitat Wan, C.-Y., Eisenman, S. B., & Campbell, A. T. (2003). CODA: Congestion detection and avoidance in sensor networks. In Proceedings of the 1st international conference on Embedded networked sensor systems, pp. 266–279. Wan, C.-Y., Eisenman, S. B., & Campbell, A. T. (2003). CODA: Congestion detection and avoidance in sensor networks. In Proceedings of the 1st international conference on Embedded networked sensor systems, pp. 266–279.
28.
Zurück zum Zitat Heikalabad, S. R., Ghaffari, A., Hadian, M. A., & Rasouli, H. (2011). DPCC: Dynamic predictive congestion control in wireless sensor networks. IJCSI International Journal of Computer Science Issues, 8, 472–477. Heikalabad, S. R., Ghaffari, A., Hadian, M. A., & Rasouli, H. (2011). DPCC: Dynamic predictive congestion control in wireless sensor networks. IJCSI International Journal of Computer Science Issues, 8, 472–477.
29.
Zurück zum Zitat Sergiou, C., & Vassiliou, V. (2011). DAlPaS: A performance aware congestion control algorithm in wireless sensor networks. In 2011 18th international conference on telecommunications (ICT), pp. 167–173. Sergiou, C., & Vassiliou, V. (2011). DAlPaS: A performance aware congestion control algorithm in wireless sensor networks. In 2011 18th international conference on telecommunications (ICT), pp. 167–173.
30.
Zurück zum Zitat Rezaee, A. A., Yaghmaee, M. H., Rahmani, A. M., & Mohajerzadeh, A. H. (2014). HOCA: Healthcare aware optimized congestion avoidance and control protocol for wireless sensor networks. Journal of Network and Computer Applications, 37, 216–228.CrossRef Rezaee, A. A., Yaghmaee, M. H., Rahmani, A. M., & Mohajerzadeh, A. H. (2014). HOCA: Healthcare aware optimized congestion avoidance and control protocol for wireless sensor networks. Journal of Network and Computer Applications, 37, 216–228.CrossRef
31.
Zurück zum Zitat Chen, J. I.-Z., & Lin, C.-H. (2014). Throughput evaluation of a novel scheme to mitigate the congestion over WSNs. Wireless Personal Communications, 75, 1863–1877.CrossRef Chen, J. I.-Z., & Lin, C.-H. (2014). Throughput evaluation of a novel scheme to mitigate the congestion over WSNs. Wireless Personal Communications, 75, 1863–1877.CrossRef
Metadaten
Titel
Controlling Congestion in Wireless Sensor Networks Through Imperialist Competitive Algorithm
verfasst von
Hasan Parsavand
Ali Ghaffari
Publikationsdatum
18.04.2018
Verlag
Springer US
Erschienen in
Wireless Personal Communications / Ausgabe 2/2018
Print ISSN: 0929-6212
Elektronische ISSN: 1572-834X
DOI
https://doi.org/10.1007/s11277-018-5752-z

Weitere Artikel der Ausgabe 2/2018

Wireless Personal Communications 2/2018 Zur Ausgabe

Neuer Inhalt