Skip to main content
Erschienen in: Journal of Materials Science: Materials in Electronics 15/2020

07.07.2020

Convective self-assembled processed multiwall carbon nanotube thin films for semi-transparent microelectronic applications

verfasst von: Ahmed M. Nawar, I. S. Yahia, M. S. Al-Kotb

Erschienen in: Journal of Materials Science: Materials in Electronics | Ausgabe 15/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

A self-assembled convective setup was utilized to manufacture multiwall carbon nanotube (MWCNTs) thin films at room temperature on glass substrates. The extracted X-ray diffraction patterns revealed that the manufactured MWCNTs films have a crystal structure with observed peaks at 2θ = 26.61°, 43.45°, and 53.1°, and are related to the (002), (101) and (004) planes, respectively, confined to graphite of a hexagonal structure. The Raman spectroscopic behavior of the samples was investigated, and the intensity of the D:G band ratio was utilized to estimate the crystallinity degree of carbon in the MWCNTs samples (~ 0.81). The SEM images of the films showed that the topographical properties of the films are retained and densely packed, confirming a network distribution. Briefly, the films are significantly influenced to have a rod-like shape of the MWCNTs. The analyzed HR-TEM images of the films have a uniform structure with cylindrical-shaped MWCNTs. When the energy of the probe waves was  ~ 3.95 eV, the reflected and transmitted probe wave vanished. The fabricated MWCNTs films may play an essential role as a real absorber with an absorption coefficient α(hυ = 3.5 eV) ≈ 5.36 × 105 cm−1. The manufactured MWCNTs films are found to support the interpretation of a direct bandgap; the evaluated energy gap is \({E}_{g}^{OPT}\) =3.748 eV as a result of the carbon atoms impurities; and a direct transition at low energy is estimated by \({E}_{g}^{Onset}=0.59 \mathrm{e}\mathrm{V}\). The performance of the fabricated films is predicted and analyzed by the complex parameters: dispersion, n*, optical dielectric, ε*, and optical conductivity, σ*. The manufactured MWCNTs provide a pathway to fabricate a broadband stable behavioral absorptive layer for photovoltaic devices and optical switching optoelectronics (at low reflectance and transmittance with high absorbance).

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
2.
Zurück zum Zitat M.A. Basit, M.S.U. Malik, G.U. Rehman, F.S. Awan, L.A. Khan, T. Subhani, Incorporation of carbon nanotubes on strategically de-sized carbon fibers for enhanced interlaminar shear strength of epoxy matrix composites. J. Chem. Soc. Pak. 41, 655 (2019) M.A. Basit, M.S.U. Malik, G.U. Rehman, F.S. Awan, L.A. Khan, T. Subhani, Incorporation of carbon nanotubes on strategically de-sized carbon fibers for enhanced interlaminar shear strength of epoxy matrix composites. J. Chem. Soc. Pak. 41, 655 (2019)
3.
Zurück zum Zitat J. Robertson, Realistic applications of CNTs. Mater. Today 7(10), 46–52 (2004)CrossRef J. Robertson, Realistic applications of CNTs. Mater. Today 7(10), 46–52 (2004)CrossRef
4.
Zurück zum Zitat P. Merel, J.B.A. Kpetsu, C. Koechlin, S. Maine, R. Haidar, J.L. Pelouard, A. Sarkissian, M.I. Ionescu, X. Sun, P. Laou, S. Paradis, Infrared sensors based on multi-wall carbon nanotube films. Comptes Rendus Phys. 11, 375–380 (2010)CrossRef P. Merel, J.B.A. Kpetsu, C. Koechlin, S. Maine, R. Haidar, J.L. Pelouard, A. Sarkissian, M.I. Ionescu, X. Sun, P. Laou, S. Paradis, Infrared sensors based on multi-wall carbon nanotube films. Comptes Rendus Phys. 11, 375–380 (2010)CrossRef
5.
Zurück zum Zitat Á. Kukovecz, R. Smajda, M. Oze, H. Haspel, Z. Kónya, I. Kiricsi, Pyroelectric temperature sensitization of multi-wall carbon nanotube papers. Carbon 46, 1262–1265 (2008)CrossRef Á. Kukovecz, R. Smajda, M. Oze, H. Haspel, Z. Kónya, I. Kiricsi, Pyroelectric temperature sensitization of multi-wall carbon nanotube papers. Carbon 46, 1262–1265 (2008)CrossRef
6.
Zurück zum Zitat J.H. Lehman, K.E. Hurst, A.M. Radojevic, A.C. Dillon, R.M. Osgood Jr., Multiwall carbon nanotube absorber on a thin-film lithium niobate pyroelectric detector. Opt. Lett. 32, 772–774 (2007)CrossRef J.H. Lehman, K.E. Hurst, A.M. Radojevic, A.C. Dillon, R.M. Osgood Jr., Multiwall carbon nanotube absorber on a thin-film lithium niobate pyroelectric detector. Opt. Lett. 32, 772–774 (2007)CrossRef
7.
Zurück zum Zitat G. Bieszczad, M. Kastek, Measurement of thermal behavior of detector array surface with the use of microscopic thermal camera. Metrol. Meas. Syst. 18, 679–690 (2011)CrossRef G. Bieszczad, M. Kastek, Measurement of thermal behavior of detector array surface with the use of microscopic thermal camera. Metrol. Meas. Syst. 18, 679–690 (2011)CrossRef
8.
Zurück zum Zitat J. Lehman, C. Yung, N. Tomlin, D. Conklin, M. Stephens, Carbon nanotube-based black coatings. Appl. Phys. Rev. 5, 011103 (2018)CrossRef J. Lehman, C. Yung, N. Tomlin, D. Conklin, M. Stephens, Carbon nanotube-based black coatings. Appl. Phys. Rev. 5, 011103 (2018)CrossRef
10.
Zurück zum Zitat R. Zhang, Y. Zhang, F. Wei, Horizontally aligned carbon nanotube arrays: growth mechanism, controlled synthesis, characterization, properties and applications. Chem. Soc. Rev. 46, 3661 (2017)CrossRef R. Zhang, Y. Zhang, F. Wei, Horizontally aligned carbon nanotube arrays: growth mechanism, controlled synthesis, characterization, properties and applications. Chem. Soc. Rev. 46, 3661 (2017)CrossRef
13.
Zurück zum Zitat Y. Meng, X.B. Xu, H. Li, Y. Wang, E.X. Ding, Z.C. Zhang, H.Z. Geng, Optimisation of carbon nanotube ink for large-area transparent conducting films fabricated by controllable rod-coating method. Carbon 70, 103–110 (2014).CrossRef Y. Meng, X.B. Xu, H. Li, Y. Wang, E.X. Ding, Z.C. Zhang, H.Z. Geng, Optimisation of carbon nanotube ink for large-area transparent conducting films fabricated by controllable rod-coating method. Carbon 70, 103–110 (2014).CrossRef
14.
Zurück zum Zitat Yu LePing, C. Shearer, J. Shapter, Recent development of carbon nanotube transparent conductive films. Chem. Rev. 116, 13413–13453 (2016)CrossRef Yu LePing, C. Shearer, J. Shapter, Recent development of carbon nanotube transparent conductive films. Chem. Rev. 116, 13413–13453 (2016)CrossRef
15.
Zurück zum Zitat N. Imazu, T. Fujigaya, N. Nakashima, Fabrication of flexible transparent conductive films from long double-walled carbon nanotubes. Sci. Technol. Adv. Mater. 15, 025005 (2014)CrossRef N. Imazu, T. Fujigaya, N. Nakashima, Fabrication of flexible transparent conductive films from long double-walled carbon nanotubes. Sci. Technol. Adv. Mater. 15, 025005 (2014)CrossRef
16.
Zurück zum Zitat A. Venkataraman, E.V. Amadi, Y. Chen, C. Papadopoulos, Carbon nanotube assembly and integration for applications. Nanoscale Res. Lett. 14, 220 (2019)CrossRef A. Venkataraman, E.V. Amadi, Y. Chen, C. Papadopoulos, Carbon nanotube assembly and integration for applications. Nanoscale Res. Lett. 14, 220 (2019)CrossRef
17.
Zurück zum Zitat T. Kitano, Y. Maeda, T. Akasaka, Preparation of transparent and conductive thin films of carbon nanotubes using a spreading/coating technique. Carbon 47, 3559–3565 (2009)CrossRef T. Kitano, Y. Maeda, T. Akasaka, Preparation of transparent and conductive thin films of carbon nanotubes using a spreading/coating technique. Carbon 47, 3559–3565 (2009)CrossRef
18.
Zurück zum Zitat N.T. Dinh, E. Sowade, T. Blaudeck, S. Hermann, R.D. Rodriguez, D.R. Zahn, S.E. Schulz, R.R. Baumann, O. Kanoun, High-resolution inkjet printing of conductive carbon nanotube twin lines utilizing evaporation-driven self-assembly. Carbon 96, 382–393 (2016)CrossRef N.T. Dinh, E. Sowade, T. Blaudeck, S. Hermann, R.D. Rodriguez, D.R. Zahn, S.E. Schulz, R.R. Baumann, O. Kanoun, High-resolution inkjet printing of conductive carbon nanotube twin lines utilizing evaporation-driven self-assembly. Carbon 96, 382–393 (2016)CrossRef
19.
Zurück zum Zitat Y. Zhou, R. Azumi, Carbon nanotube based transparent conductive films: progress, challenges, and perspectives. Sci. Technol. Adv. Mater. 17, 493–516 (2016)CrossRef Y. Zhou, R. Azumi, Carbon nanotube based transparent conductive films: progress, challenges, and perspectives. Sci. Technol. Adv. Mater. 17, 493–516 (2016)CrossRef
20.
Zurück zum Zitat K.-U. Jan, Transparent MWCNT thin films fabricated by using the spray method. J. Korean Inst. Electr. Electron. Mater. Eng. 23, 338 (2010) K.-U. Jan, Transparent MWCNT thin films fabricated by using the spray method. J. Korean Inst. Electr. Electron. Mater. Eng. 23, 338 (2010)
21.
Zurück zum Zitat M. Farbod, A. Zilaie, I. Kazeminezhad, Carbon nanotubes length optimization for preparation of improved transparent and conducting thin film substrates. J. Sci. 2, 99–104 (2017) M. Farbod, A. Zilaie, I. Kazeminezhad, Carbon nanotubes length optimization for preparation of improved transparent and conducting thin film substrates. J. Sci. 2, 99–104 (2017)
22.
Zurück zum Zitat C. Farcau, N.M. Sangeetha, H. Moreira, B. Viallet, J. Grisolia, D. Ciuculescu-Pradines, L. Ressier, High-sensitivity strain gauge based on a single wire of gold nanoparticles fabricated by stop-and-go convective self-assembly. ACS Nano 5(9), 7137–7143 (2011). https://doi.org/10.1021/nn201833y CrossRef C. Farcau, N.M. Sangeetha, H. Moreira, B. Viallet, J. Grisolia, D. Ciuculescu-Pradines, L. Ressier, High-sensitivity strain gauge based on a single wire of gold nanoparticles fabricated by stop-and-go convective self-assembly. ACS Nano 5(9), 7137–7143 (2011). https://​doi.​org/​10.​1021/​nn201833y CrossRef
23.
Zurück zum Zitat A.M. Nawar, A. El-Mahalawy, M, Simple processed semi-transparent Schottky diode based on PMMA-MWCNTs nanocomposite for new generation of optoelectronics. Synth. Metals 255, 116102 (2019)CrossRef A.M. Nawar, A. El-Mahalawy, M, Simple processed semi-transparent Schottky diode based on PMMA-MWCNTs nanocomposite for new generation of optoelectronics. Synth. Metals 255, 116102 (2019)CrossRef
24.
Zurück zum Zitat A.M. Nawar, M.M. Makhlouf, Bi-functional platform for non-volatile memory and photoconductive Schottky devices based on multi-walled carbon nanotubes: Rhodamine B/silicon hybrid heterostructure. Physica E 113, 54–64 (2019)CrossRef A.M. Nawar, M.M. Makhlouf, Bi-functional platform for non-volatile memory and photoconductive Schottky devices based on multi-walled carbon nanotubes: Rhodamine B/silicon hybrid heterostructure. Physica E 113, 54–64 (2019)CrossRef
25.
Zurück zum Zitat M.M. El-Nahass, H.A. El-Khalek, A.M. Nawar, Topological, morphological and optical properties of Gamma irradiated Ni (II) tetraphenyl porphyrin thin films. J. Opt. Commun. 285, 1872–1881 (2012)CrossRef M.M. El-Nahass, H.A. El-Khalek, A.M. Nawar, Topological, morphological and optical properties of Gamma irradiated Ni (II) tetraphenyl porphyrin thin films. J. Opt. Commun. 285, 1872–1881 (2012)CrossRef
26.
27.
Zurück zum Zitat A.M. Nawar, I.S. Yahia, Fabrication and characterization of anthracene thin films for wide scale organic optoelectronic applications based on linear/nonlinear analyzed optical dispersion parameters. Opt. Mater. 70, 1–10 (2017)CrossRef A.M. Nawar, I.S. Yahia, Fabrication and characterization of anthracene thin films for wide scale organic optoelectronic applications based on linear/nonlinear analyzed optical dispersion parameters. Opt. Mater. 70, 1–10 (2017)CrossRef
28.
Zurück zum Zitat A.M. Nawar, Fast processed crystalline methyl violet-6B thin films for optimizing the light-harvesting characteristics of Ag/methyl violet 6B/p-Si/Al solar cells. Appl. Phys. A 125, 210 (2019)CrossRef A.M. Nawar, Fast processed crystalline methyl violet-6B thin films for optimizing the light-harvesting characteristics of Ag/methyl violet 6B/p-Si/Al solar cells. Appl. Phys. A 125, 210 (2019)CrossRef
29.
30.
Zurück zum Zitat J.H. Lehman, M. Terrones, E. Mansfield, K.E. Hurst, V. Meunier, Evaluating the characteristics of multiwall carbon nanotubes. Carbon 49, 2581–2602 (2011)CrossRef J.H. Lehman, M. Terrones, E. Mansfield, K.E. Hurst, V. Meunier, Evaluating the characteristics of multiwall carbon nanotubes. Carbon 49, 2581–2602 (2011)CrossRef
31.
Zurück zum Zitat M. Younas, M.A. Gondal, M.A. Dastageera, K. Harrabi, Efficient and cost-effective dye-sensitized solar cells using MWCNT-TiO2 nanocomposite as photoanode and MWCNT as Pt-free counter electrode. Sol. Energy 188, 1178–1188 (2019)CrossRef M. Younas, M.A. Gondal, M.A. Dastageera, K. Harrabi, Efficient and cost-effective dye-sensitized solar cells using MWCNT-TiO2 nanocomposite as photoanode and MWCNT as Pt-free counter electrode. Sol. Energy 188, 1178–1188 (2019)CrossRef
32.
Zurück zum Zitat H.A. Maddah, V. Berry, S.K. Behura, Biomolecular photosensitizers for dye-sensitized solar cells: recent developments and critical insights. Renew. Sustain. Energy Rev. 121, 109678 (2020)CrossRef H.A. Maddah, V. Berry, S.K. Behura, Biomolecular photosensitizers for dye-sensitized solar cells: recent developments and critical insights. Renew. Sustain. Energy Rev. 121, 109678 (2020)CrossRef
34.
Zurück zum Zitat I. Konstantinov, T. Babeva, S. Kitova, Appl. Opt. 37(19), 4260 (1998)CrossRef I. Konstantinov, T. Babeva, S. Kitova, Appl. Opt. 37(19), 4260 (1998)CrossRef
35.
Zurück zum Zitat O.S. Heavens, in Physics of Thin Films, ed. by G. Hass, R. Thus (Academic, New York, 1964), p. 193 O.S. Heavens, in Physics of Thin Films, ed. by G. Hass, R. Thus (Academic, New York, 1964), p. 193
36.
Zurück zum Zitat M.S. Dresselhaus, A. Jorio, R. Saito, Characterizing graphene, graphite, and carbon nanotubes by Raman spectroscopy. Annu. Rev. Condens. Matter Phys. 1, 89–108 (2010)CrossRef M.S. Dresselhaus, A. Jorio, R. Saito, Characterizing graphene, graphite, and carbon nanotubes by Raman spectroscopy. Annu. Rev. Condens. Matter Phys. 1, 89–108 (2010)CrossRef
37.
Zurück zum Zitat S. Dhall, N. Jaggi, R. Nathawat, Functionalized multiwalled carbon nanotubes based hydrogen gas sensor. Sens. Actuators A 201, 321–327 (2013)CrossRef S. Dhall, N. Jaggi, R. Nathawat, Functionalized multiwalled carbon nanotubes based hydrogen gas sensor. Sens. Actuators A 201, 321–327 (2013)CrossRef
38.
Zurück zum Zitat L. Bokobza, J. Bruneel, M. Couzi, Chem. Phys. Lett. 590, 153–159 (2013)CrossRef L. Bokobza, J. Bruneel, M. Couzi, Chem. Phys. Lett. 590, 153–159 (2013)CrossRef
41.
Zurück zum Zitat P. Mahanandia, P.N. Vishwakarma, K.K. Nanda, V. Prasad, S.V. Subramanyam, S.K. Dev, P.V. Satyam, Multiwall carbon nanotubes from pyrolysis of tetrahydrofuran. Mater. Res. Bull. 41, 2311–2317 (2006)CrossRef P. Mahanandia, P.N. Vishwakarma, K.K. Nanda, V. Prasad, S.V. Subramanyam, S.K. Dev, P.V. Satyam, Multiwall carbon nanotubes from pyrolysis of tetrahydrofuran. Mater. Res. Bull. 41, 2311–2317 (2006)CrossRef
42.
Zurück zum Zitat A. Abouelsayed, W.H. Eisa, M. Dawy, A. Shabaka, Ultraviolet and infrared studies of the single-walled and multi-walled carbon nanotube films with different thickness. Phys. B 483, 8–12 (2016)CrossRef A. Abouelsayed, W.H. Eisa, M. Dawy, A. Shabaka, Ultraviolet and infrared studies of the single-walled and multi-walled carbon nanotube films with different thickness. Phys. B 483, 8–12 (2016)CrossRef
43.
Zurück zum Zitat Á. Pekker, F. Borondics, K. Kamarás, A.G. Rinzler, D.B. Tanner, Phys. Stat. Sol. (B) 243, 3485 (2006)CrossRef Á. Pekker, F. Borondics, K. Kamarás, A.G. Rinzler, D.B. Tanner, Phys. Stat. Sol. (B) 243, 3485 (2006)CrossRef
44.
Zurück zum Zitat J. Bardeen, F. J. Blatt, L. H. Hall, Proceedings of the Photoconductivity Conference held at Atlantic City, ed. R. G. Breckenridge, B. R. Russell, E. E. Hahn (John Wiley, New York, 1956), p. 146. J. Bardeen, F. J. Blatt, L. H. Hall, Proceedings of the Photoconductivity Conference held at Atlantic City, ed. R. G. Breckenridge, B. R. Russell, E. E. Hahn (John Wiley, New York, 1956), p. 146.
45.
Zurück zum Zitat S.H. Wemple, M. DiDomenico, Behavior of the electronic dielectric constant in covalent and ionic materials. J. Phys. Rev. B 3, 1338 (1971)CrossRef S.H. Wemple, M. DiDomenico, Behavior of the electronic dielectric constant in covalent and ionic materials. J. Phys. Rev. B 3, 1338 (1971)CrossRef
46.
Zurück zum Zitat S.H. Wemple, Refractive-index behavior of amorphous semiconductors and glasses. J. Phys. Rev. B 7, 3767 (1973)CrossRef S.H. Wemple, Refractive-index behavior of amorphous semiconductors and glasses. J. Phys. Rev. B 7, 3767 (1973)CrossRef
Metadaten
Titel
Convective self-assembled processed multiwall carbon nanotube thin films for semi-transparent microelectronic applications
verfasst von
Ahmed M. Nawar
I. S. Yahia
M. S. Al-Kotb
Publikationsdatum
07.07.2020
Verlag
Springer US
Erschienen in
Journal of Materials Science: Materials in Electronics / Ausgabe 15/2020
Print ISSN: 0957-4522
Elektronische ISSN: 1573-482X
DOI
https://doi.org/10.1007/s10854-020-03759-z

Weitere Artikel der Ausgabe 15/2020

Journal of Materials Science: Materials in Electronics 15/2020 Zur Ausgabe

Neuer Inhalt