Skip to main content
Erschienen in: Wireless Networks 5/2017

15.03.2016

Cooperation-enabled energy efficient base station management for dense small cell networks

verfasst von: Yawen Chen, Xiangming Wen, Zhaoming Lu, Hua Shao, Wenpeng Jing

Erschienen in: Wireless Networks | Ausgabe 5/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Dense small cell networks are deployed for future wireless communication to meet the ever-increasing mobile traffic demand. However, network densification will significantly increase the energy budget and lead to energy inefficiency due to the constant operation of network hardware. In this paper, we consider cooperation-enabled dynamic base station (BS) management for downlink dense small cell networks. By introducing two traffic-aware sleep modes, i.e., deep sleep mode and opportunistic sleep mode which are operating in different time and energy consumption scales, the network hardwares are turned to be the resources that can be occupied and released dynamically. Small cell BSs (SBSs) with zero or low load are completely switched off and reside in deep sleep mode during a predefined time interval. At each time slot, SBS dynamically turn some antennas and associated physical components into opportunistic sleep mode according to the short term traffic distribution, and the users are jointly served by the remaining antennas via cooperative transmission. The corresponding sleep mode decision making are presented respectively to find the optimal number of SBS and antennas that should be switched off. Numerical results are then presented to illustrate the superior performance in terms of energy efficiency gain. In summary, the proposed cooperation-aided sleep strategies for dense small cell networks take both traffic features and optimal cooperative transmission into account, and can achieve great energy saving while maintaining required quality of service.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Fußnoten
1
This is reasonable since the research in [12] shows that a switching time of 30 \(\mu s\), which is much smaller than the duration of a time slot.
 
Literatur
2.
Zurück zum Zitat Ashraf, I., Boccardi, F., & Ho, L. (2011). Sleep mode techniques for small cell deployments. IEEE Communications Magazine, 49(8), 72–79.CrossRef Ashraf, I., Boccardi, F., & Ho, L. (2011). Sleep mode techniques for small cell deployments. IEEE Communications Magazine, 49(8), 72–79.CrossRef
3.
Zurück zum Zitat Auer, G., Giannini, V., Desset, C., Godor, I., Skillermark, P., Olsson, M., et al. (2011). How much energy is needed to run a wireless network? IEEE Wireless Communications, 18(5), 40–49. doi:10.1109/MWC.2011.6056691.CrossRef Auer, G., Giannini, V., Desset, C., Godor, I., Skillermark, P., Olsson, M., et al. (2011). How much energy is needed to run a wireless network? IEEE Wireless Communications, 18(5), 40–49. doi:10.​1109/​MWC.​2011.​6056691.CrossRef
5.
Zurück zum Zitat Boyd, S., & Vandenberghe, L. (2004). Convex optimization. Cambridge: Cambridge university press.CrossRefMATH Boyd, S., & Vandenberghe, L. (2004). Convex optimization. Cambridge: Cambridge university press.CrossRefMATH
6.
Zurück zum Zitat Budzisz, L., Ganji, F., Rizzo, G., Ajmone Marsan, M., Meo, M., Zhang, Y., et al. (2014). Dynamic resource provisioning for energy efficiency in wireless access networks: A survey and an outlook. IEEE Communications Surveys & Tutorials, 16(4), 2259–2285. doi:10.1109/COMST.2014.2329505.CrossRef Budzisz, L., Ganji, F., Rizzo, G., Ajmone Marsan, M., Meo, M., Zhang, Y., et al. (2014). Dynamic resource provisioning for energy efficiency in wireless access networks: A survey and an outlook. IEEE Communications Surveys & Tutorials, 16(4), 2259–2285. doi:10.​1109/​COMST.​2014.​2329505.CrossRef
7.
Zurück zum Zitat Cao, D., Zhou, S., Zhang, C., & Niu, Z. (2010). Energy saving performance comparison of coordinated multi-point transmission and wireless relaying. In 2010 IEEE global telecommunications conference (GLOBECOM 2010), pp. 1–5. doi:10.1109/GLOCOM.2010.5683653. Cao, D., Zhou, S., Zhang, C., & Niu, Z. (2010). Energy saving performance comparison of coordinated multi-point transmission and wireless relaying. In 2010 IEEE global telecommunications conference (GLOBECOM 2010), pp. 1–5. doi:10.​1109/​GLOCOM.​2010.​5683653.
8.
9.
10.
Zurück zum Zitat Debaillie, B., Giry, A., Gonzalez, M., Dussopt, L., Li, M., Ferling, D., & Giannini, V. (2011). Opportunities for energy savings in pico/femto-cell base-stations. In Future network mobile summit (FutureNetw), 2011, pp. 1–8. Debaillie, B., Giry, A., Gonzalez, M., Dussopt, L., Li, M., Ferling, D., & Giannini, V. (2011). Opportunities for energy savings in pico/femto-cell base-stations. In Future network mobile summit (FutureNetw), 2011, pp. 1–8.
12.
Zurück zum Zitat Frenger, P., Moberg, P., Malmodin, J., Jading, Y., & Gdor, I. (2011). Reducing energy consumption in LTE with cell DTX. In 2011 IEEE 73rd vehicular technology conference (VTC Spring), pp. 1–5. Frenger, P., Moberg, P., Malmodin, J., Jading, Y., & Gdor, I. (2011). Reducing energy consumption in LTE with cell DTX. In 2011 IEEE 73rd vehicular technology conference (VTC Spring), pp. 1–5.
14.
Zurück zum Zitat Heliot, F., Imran, M., & Tafazolli, R. (2011). Energy efficiency analysis of idealized coordinated multi-point communication system. In 2011 IEEE 73rd vehicular technology conference (VTC Spring), pp. 1–5. doi:10.1109/VETECS.2011.5956410. Heliot, F., Imran, M., & Tafazolli, R. (2011). Energy efficiency analysis of idealized coordinated multi-point communication system. In 2011 IEEE 73rd vehicular technology conference (VTC Spring), pp. 1–5. doi:10.​1109/​VETECS.​2011.​5956410.
16.
Zurück zum Zitat Nie, W., Wang, X., Zheng, F.C., & Zhang, W. (2014). Energy-efficient base station cooperation in downlink heterogeneous cellular networks. In 2014 IEEE global communications conference (GLOBECOM), pp. 1779–1784. doi:10.1109/GLOCOM.2014.7037066. Nie, W., Wang, X., Zheng, F.C., & Zhang, W. (2014). Energy-efficient base station cooperation in downlink heterogeneous cellular networks. In 2014 IEEE global communications conference (GLOBECOM), pp. 1779–1784. doi:10.​1109/​GLOCOM.​2014.​7037066.
17.
Zurück zum Zitat Niu, Z., Guo, X., Zhou, S., & Kumar, P. (2015). Characterizing energy-delay tradeoff in hyper-cellular networks with base station sleeping control. IEEE Journal on Selected Areas in Communications, 33(4), 641–650. doi:10.1109/JSAC.2015.2393494.CrossRef Niu, Z., Guo, X., Zhou, S., & Kumar, P. (2015). Characterizing energy-delay tradeoff in hyper-cellular networks with base station sleeping control. IEEE Journal on Selected Areas in Communications, 33(4), 641–650. doi:10.​1109/​JSAC.​2015.​2393494.CrossRef
19.
20.
Zurück zum Zitat Oh, E., Son, K., & Krishnamachari, B. (2013). Dynamic base station switching-on/off strategies for green cellular networks. IEEE Transactions on Wireless Communications, 12(5), 2126–2136.CrossRef Oh, E., Son, K., & Krishnamachari, B. (2013). Dynamic base station switching-on/off strategies for green cellular networks. IEEE Transactions on Wireless Communications, 12(5), 2126–2136.CrossRef
21.
Zurück zum Zitat Pantisano, F., Bennis, M., Saad, W., & Verdone, R. (2012). On the dynamic formation of cooperative multipoint transmissions in small cell networks. In 2012 IEEE globecom workshops (GC Wkshps), pp. 1139–1144. doi:10.1109/GLOCOMW.2012.6477739. Pantisano, F., Bennis, M., Saad, W., & Verdone, R. (2012). On the dynamic formation of cooperative multipoint transmissions in small cell networks. In 2012 IEEE globecom workshops (GC Wkshps), pp. 1139–1144. doi:10.​1109/​GLOCOMW.​2012.​6477739.
22.
Zurück zum Zitat Rizzo, G., Rengarajan, B., & Ajmone Marsan, M. (2014). The value of BS flexibility for QoS-aware sleep modes in cellular access networks. In 2014 IEEE international conference on communications workshops (ICC), pp. 883–888. Rizzo, G., Rengarajan, B., & Ajmone Marsan, M. (2014). The value of BS flexibility for QoS-aware sleep modes in cellular access networks. In 2014 IEEE international conference on communications workshops (ICC), pp. 883–888.
23.
Zurück zum Zitat Rongpeng, L., Zhifeng, Z., Xuan, Z., Palicot, J., & Honggang, Z. (2014). The prediction analysis of cellular radio access network traffic: From entropy theory to networking practice. IEEE Communications Magazine, 52(6), 234–240. doi:10.1109/MCOM.2014.6829969.CrossRef Rongpeng, L., Zhifeng, Z., Xuan, Z., Palicot, J., & Honggang, Z. (2014). The prediction analysis of cellular radio access network traffic: From entropy theory to networking practice. IEEE Communications Magazine, 52(6), 234–240. doi:10.​1109/​MCOM.​2014.​6829969.CrossRef
24.
26.
Zurück zum Zitat Tikunov, D., & Nishimura, T. (2007). Traffic prediction for mobile network using Holt-Winter’s exponential smoothing. In 15th international conference on software, telecommunications and computer networks, 2007. SoftCOM 2007, pp. 1–5. doi:10.1109/SOFTCOM.2007.4446113. Tikunov, D., & Nishimura, T. (2007). Traffic prediction for mobile network using Holt-Winter’s exponential smoothing. In 15th international conference on software, telecommunications and computer networks, 2007. SoftCOM 2007, pp. 1–5. doi:10.​1109/​SOFTCOM.​2007.​4446113.
27.
Zurück zum Zitat Trajkovic, L. (2009). Mining network traffic data. In IEEE international conference on intelligent computing and intelligent systems, 2009. ICIS 2009, vol. 1, pp. 1–2. doi:10.1109/ICICISYS.2009.5357946. Trajkovic, L. (2009). Mining network traffic data. In IEEE international conference on intelligent computing and intelligent systems, 2009. ICIS 2009, vol. 1, pp. 1–2. doi:10.​1109/​ICICISYS.​2009.​5357946.
28.
Zurück zum Zitat Tukmanov, A., Ding, Z., Boussakta, S., & Jamalipour, A. (2013). On the impact of network geometric models on multicell cooperative communication systems. IEEE Wireless Communications, 20(1), 75–81.CrossRef Tukmanov, A., Ding, Z., Boussakta, S., & Jamalipour, A. (2013). On the impact of network geometric models on multicell cooperative communication systems. IEEE Wireless Communications, 20(1), 75–81.CrossRef
29.
30.
Metadaten
Titel
Cooperation-enabled energy efficient base station management for dense small cell networks
verfasst von
Yawen Chen
Xiangming Wen
Zhaoming Lu
Hua Shao
Wenpeng Jing
Publikationsdatum
15.03.2016
Verlag
Springer US
Erschienen in
Wireless Networks / Ausgabe 5/2017
Print ISSN: 1022-0038
Elektronische ISSN: 1572-8196
DOI
https://doi.org/10.1007/s11276-016-1234-y

Weitere Artikel der Ausgabe 5/2017

Wireless Networks 5/2017 Zur Ausgabe

Neuer Inhalt