Skip to main content

2021 | OriginalPaper | Buchkapitel

12. Cooperative Spectrum Sensing in Energy Harvesting Cognitive Radio Networks Under Diverse Distribution Models

verfasst von : Banani Talukdar, Deepak Kumar, Shanidul Hoque, Wasim Arif

Erschienen in: 5G and Beyond Wireless Systems

Verlag: Springer Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

To address spectrum underutilization and energy constraint in wireless communication technologies, cognitive radio networks (CRN) incorporated with energy-harvesting (EH) ability is an evergreen solution. The dynamic behavior of the primary user (PU) activity is a primary component that affects the performance of a CRN. In this chapter, we investigate the impact of distribution functions on the performance of an energy harvesting enabled cooperative CRN. We consider the two most relevant distribution functions, namely Weibull and Erlang distributions, to characterize the PU behavior in a prediction-based sensing under a cooperative EH-CRN. Cooperative CRN offers better reliability of event detection, which results in efficient spectrum utilization. In this chapter, we consider a centralized cooperative EH-CRN whereby each cognitive radio (CR) node has the capability of scavenging energy from radio frequency (RF) or non-RF sources depending on a combined decision taken by the fusion center (FC). We use conventional and estimation-based energy detection schemes in our analysis. Analytical formulae for the detection probability, harvested energy, normalized throughput, and energy penalty are established, employing OR fusion rule. The impact of prediction error, number of cooperative CR nodes, number of frames, and collision constraint on energy harvesting and normalized throughput is also studied. Simulations are performed, and a thorough, comprehensive comparison of the results is presented. A detailed comparative analysis for both Weibull and Erlang distributions is also presented. The results show that both distributions perform better than the conventional exponential distribution in a centralized cooperative EH-CRN and signify the usability of the model in designing practical systems.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Ahmed ME, Kim DI, Kim JY, Shin Y (2017) Energy-arrival-aware detection threshold in wireless-powered cognitive radio networks. IEEE Trans Veh Technol 66(10):9201–9213CrossRef Ahmed ME, Kim DI, Kim JY, Shin Y (2017) Energy-arrival-aware detection threshold in wireless-powered cognitive radio networks. IEEE Trans Veh Technol 66(10):9201–9213CrossRef
Zurück zum Zitat Akyildiz F, Lee W-Y, Vuran MC, Mohanty S (2006) Next generation/dynamic spectrum access/cognitive radio wireless networks—a survey. Comput Netw 50(13):2127–2159MATHCrossRef Akyildiz F, Lee W-Y, Vuran MC, Mohanty S (2006) Next generation/dynamic spectrum access/cognitive radio wireless networks—a survey. Comput Netw 50(13):2127–2159MATHCrossRef
Zurück zum Zitat Akyildiz IF, Lee W-Y, Chowdhury KR (2009) CRAHNs: cognitive radio ad hoc networks. Ad Hoc Netw 7(5):810–836CrossRef Akyildiz IF, Lee W-Y, Chowdhury KR (2009) CRAHNs: cognitive radio ad hoc networks. Ad Hoc Netw 7(5):810–836CrossRef
Zurück zum Zitat Akyildiz IF, Lo BF, Balakrishnan R (2011) Cooperative spectrum sensing in cognitive radio networks: a survey. Phys Commun 4(1):40–62CrossRef Akyildiz IF, Lo BF, Balakrishnan R (2011) Cooperative spectrum sensing in cognitive radio networks: a survey. Phys Commun 4(1):40–62CrossRef
Zurück zum Zitat Arif W, Hoque S, Sen D, Baishya S (2015) A comprehensive analysis of spectrum handoff under different distribution models for cognitive radio networks. Wirel Pers Commun 85(4):2519–2548CrossRef Arif W, Hoque S, Sen D, Baishya S (2015) A comprehensive analysis of spectrum handoff under different distribution models for cognitive radio networks. Wirel Pers Commun 85(4):2519–2548CrossRef
Zurück zum Zitat Barani B (2020) Beyond 5G, a European perspective. In: Sixth ITU workshop on network 2030 Barani B (2020) Beyond 5G, a European perspective. In: Sixth ITU workshop on network 2030
Zurück zum Zitat Bhowmick A, Yadav K, Roy SD, Kundu S (2017) Throughput of an energy harvesting cognitive radio network based on prediction of primary user. IEEE Trans Veh Technol 66(9):8119–8128CrossRef Bhowmick A, Yadav K, Roy SD, Kundu S (2017) Throughput of an energy harvesting cognitive radio network based on prediction of primary user. IEEE Trans Veh Technol 66(9):8119–8128CrossRef
Zurück zum Zitat Borgne YL, Santini S, Bontempi G (2007) Adaptive model selection for time series prediction in wireless sensor networks. Signal Process 87(12):3010–3020MATHCrossRef Borgne YL, Santini S, Bontempi G (2007) Adaptive model selection for time series prediction in wireless sensor networks. Signal Process 87(12):3010–3020MATHCrossRef
Zurück zum Zitat Digham FF, Alouini M-S, Simon MK (2007) On the energy detection of unknown signals over fading channels. IEEE Trans Commun 55(1):21–24CrossRef Digham FF, Alouini M-S, Simon MK (2007) On the energy detection of unknown signals over fading channels. IEEE Trans Commun 55(1):21–24CrossRef
Zurück zum Zitat Federal Communications Commission (FCC) (2003) Notice for proposed rulemaking (NPRM 03 322): facilitating opportunities for flexible, efficient, and reliable spectrum use employing spectrum agile radio technologies. ET Docket No. 03 108, Dec 2003 Federal Communications Commission (FCC) (2003) Notice for proposed rulemaking (NPRM 03 322): facilitating opportunities for flexible, efficient, and reliable spectrum use employing spectrum agile radio technologies. ET Docket No. 03 108, Dec 2003
Zurück zum Zitat Gardner W (1988) Signal interception: a unifying theoretical framework for feature detection. IEEE Trans Commun 36(8):897–906CrossRef Gardner W (1988) Signal interception: a unifying theoretical framework for feature detection. IEEE Trans Commun 36(8):897–906CrossRef
Zurück zum Zitat Gardner WA (1994) Cyclostationarity in Communications and Signal Processing. IEEE Press, IEEE Communications Society, Sponsor Gardner WA (1994) Cyclostationarity in Communications and Signal Processing. IEEE Press, IEEE Communications Society, Sponsor
Zurück zum Zitat Haykin S (2005) Cognitive radio: brain-empowered wireless communications. IEEE J Sel Areas Commun 23:201–220CrossRef Haykin S (2005) Cognitive radio: brain-empowered wireless communications. IEEE J Sel Areas Commun 23:201–220CrossRef
Zurück zum Zitat Hoque S, Arif W (2017) Performance analysis of cognitive radio networks with generalized call holding time distribution of secondary user. Telecommun Syst 66(1):95–108CrossRef Hoque S, Arif W (2017) Performance analysis of cognitive radio networks with generalized call holding time distribution of secondary user. Telecommun Syst 66(1):95–108CrossRef
Zurück zum Zitat Hoque S, Arif W (2018) Impact of secondary user mobility on spectrum handoff under generalized residual time distributions in cognitive radio networks. AEU Int J Electron Commun 1(86):185–194CrossRef Hoque S, Arif W (2018) Impact of secondary user mobility on spectrum handoff under generalized residual time distributions in cognitive radio networks. AEU Int J Electron Commun 1(86):185–194CrossRef
Zurück zum Zitat Hoque S, Arif W, Sen D, Baishya S (2018) Analysis of spectrum handoff under general residual time distributions of spectrum holes in cognitive radio networks. J Inf Sci Eng 34(4) Hoque S, Arif W, Sen D, Baishya S (2018) Analysis of spectrum handoff under general residual time distributions of spectrum holes in cognitive radio networks. J Inf Sci Eng 34(4)
Zurück zum Zitat Jondral FK (2005) Software-defined radio-basics and evolution to cognitive radio. EURASIP J Wirel Commun Netw 3:275–283MATH Jondral FK (2005) Software-defined radio-basics and evolution to cognitive radio. EURASIP J Wirel Commun Netw 3:275–283MATH
Zurück zum Zitat Khalili S, Jamshidi A, Derakhtian M (2013) Total throughput maximisation in a cognitive radio network. IET Commun 7(11):1051–1060 Khalili S, Jamshidi A, Derakhtian M (2013) Total throughput maximisation in a cognitive radio network. IET Commun 7(11):1051–1060
Zurück zum Zitat Kim SW (2019) Simultaneous spectrum sensing and energy harvesting. IEEE Trans Wirel Commun 18(2):769–779CrossRef Kim SW (2019) Simultaneous spectrum sensing and energy harvesting. IEEE Trans Wirel Commun 18(2):769–779CrossRef
Zurück zum Zitat Lee S, Zhang R, Huang K (2013) Opportunistic wireless energy harvesting in cognitive radio networks. IEEE Trans Wirel Commun 12(9):4788–4799CrossRef Lee S, Zhang R, Huang K (2013) Opportunistic wireless energy harvesting in cognitive radio networks. IEEE Trans Wirel Commun 12(9):4788–4799CrossRef
Zurück zum Zitat Lee HS, Ahmed ME, Kim DI (2018) Optimal spectrum sensing policy in RF-powered cognitive radio networks. IEEE Trans Veh Technol 67(10):9557–9570CrossRef Lee HS, Ahmed ME, Kim DI (2018) Optimal spectrum sensing policy in RF-powered cognitive radio networks. IEEE Trans Veh Technol 67(10):9557–9570CrossRef
Zurück zum Zitat Liang Y-C, Zeng Y, Peh ECY, Tuan Hong A (2008) Sensing-throughput tradeoff for cognitive radio networks. IEEE Trans Wirel Commun 7(4):1326–1337 Liang Y-C, Zeng Y, Peh ECY, Tuan Hong A (2008) Sensing-throughput tradeoff for cognitive radio networks. IEEE Trans Wirel Commun 7(4):1326–1337
Zurück zum Zitat Ma J, Li G, Juang BH (2009) Signal processing in cognitive radio. Proc IEEE 97(5):805–823CrossRef Ma J, Li G, Juang BH (2009) Signal processing in cognitive radio. Proc IEEE 97(5):805–823CrossRef
Zurück zum Zitat Mao S, Cheung MH, Wong V (2012) An optimal energy allocation algorithm for energy harvesting wireless sensor networks. In: Proceedings of IEEE international conference on communications, pp 265–270 Mao S, Cheung MH, Wong V (2012) An optimal energy allocation algorithm for energy harvesting wireless sensor networks. In: Proceedings of IEEE international conference on communications, pp 265–270
Zurück zum Zitat Mariani A, Giorgetti A, Chiani M (2011) Effects of noise power estimation on energy detection for cognitive radio applications. IEEE Trans Commun 59(12):3410–3420CrossRef Mariani A, Giorgetti A, Chiani M (2011) Effects of noise power estimation on energy detection for cognitive radio applications. IEEE Trans Commun 59(12):3410–3420CrossRef
Zurück zum Zitat Mariani A, Kandeepan S, Giorgetti A (2015) Periodic spectrum sensing with non-continuous primary user transmissions. IEEE Trans Wirel Commun 14(3):1636–1649CrossRef Mariani A, Kandeepan S, Giorgetti A (2015) Periodic spectrum sensing with non-continuous primary user transmissions. IEEE Trans Wirel Commun 14(3):1636–1649CrossRef
Zurück zum Zitat Mitola J III, Maguire GQ Jr (1999) Cognitive radio: making software radios more personal. IEEE Pers Commun Mag 6(4):13–18CrossRef Mitola J III, Maguire GQ Jr (1999) Cognitive radio: making software radios more personal. IEEE Pers Commun Mag 6(4):13–18CrossRef
Zurück zum Zitat Park S, Hong D (2013) Achievable throughput of energy harvesting cognitive radio networks. IEEE Trans Wirel Commun 12(12):6166–6179CrossRef Park S, Hong D (2013) Achievable throughput of energy harvesting cognitive radio networks. IEEE Trans Wirel Commun 12(12):6166–6179CrossRef
Zurück zum Zitat Park S, Hong D (2014) Optimal spectrum access for energy harvesting cognitive radio networks. IEEE Trans Wirel Commun 13(5):2601–2613CrossRef Park S, Hong D (2014) Optimal spectrum access for energy harvesting cognitive radio networks. IEEE Trans Wirel Commun 13(5):2601–2613CrossRef
Zurück zum Zitat Shafie AE (2014) Space-time coding for an energy harvesting cooperative secondary terminal. IEEE Commun Lett 18(9):1571–1574CrossRef Shafie AE (2014) Space-time coding for an energy harvesting cooperative secondary terminal. IEEE Commun Lett 18(9):1571–1574CrossRef
Zurück zum Zitat Shafie AE, Khattab T (2014) Maximum throughput of a cooperative energy harvesting cognitive radio user. In: Proceedings of 25th annual international symposium on personal, indoor, and mobile radio communication, pp 1067–1072 Shafie AE, Khattab T (2014) Maximum throughput of a cooperative energy harvesting cognitive radio user. In: Proceedings of 25th annual international symposium on personal, indoor, and mobile radio communication, pp 1067–1072
Zurück zum Zitat Shafie AE, Ashour M, Khattab T, Mohamed A (2015) On spectrum sharing between energy harvesting cognitive radio users and primary users. In: Proceedings of international conference on computing, networking and communications, pp 214–220 Shafie AE, Ashour M, Khattab T, Mohamed A (2015) On spectrum sharing between energy harvesting cognitive radio users and primary users. In: Proceedings of international conference on computing, networking and communications, pp 214–220
Zurück zum Zitat Shi Z, Teh KC, Li KH (2013) Energy-efficient joint design of sensing and transmission durations for protection of primary user in cognitive radio systems. IEEE Commun Lett 17(3):565–568CrossRef Shi Z, Teh KC, Li KH (2013) Energy-efficient joint design of sensing and transmission durations for protection of primary user in cognitive radio systems. IEEE Commun Lett 17(3):565–568CrossRef
Zurück zum Zitat Singh A, Bhatnagar M, Mallik R (2016) Performance of an improved energy detector in multi-hop cognitive radio networks. IEEE Trans Veh Technol 65(2):732–743CrossRef Singh A, Bhatnagar M, Mallik R (2016) Performance of an improved energy detector in multi-hop cognitive radio networks. IEEE Trans Veh Technol 65(2):732–743CrossRef
Zurück zum Zitat Tandra R, Sahai A (2008) SNR walls for signal detection. IEEE J Sel Top Signal Process 2(1):4–17CrossRef Tandra R, Sahai A (2008) SNR walls for signal detection. IEEE J Sel Top Signal Process 2(1):4–17CrossRef
Zurück zum Zitat Xing X, Jing T, Cheng W, Huo Y, Cheng X (2012) Spectrum prediction in cognitive radio networks. In: Proceedings of IEEE GLOBECOM, pp 3982–3987 Xing X, Jing T, Cheng W, Huo Y, Cheng X (2012) Spectrum prediction in cognitive radio networks. In: Proceedings of IEEE GLOBECOM, pp 3982–3987
Zurück zum Zitat Yingxi L, Ahmed T (2014) Primary traffic characterization and secondary transmissions. IEEE Trans Wirel Commun 13(6):3003–3016CrossRef Yingxi L, Ahmed T (2014) Primary traffic characterization and secondary transmissions. IEEE Trans Wirel Commun 13(6):3003–3016CrossRef
Zurück zum Zitat Yuan G, He H, Deng Z, Zhang X (2018) Cognitive radio network with energy harvesting based on primary and secondary user signals. IEEE Access 6:9081–9090CrossRef Yuan G, He H, Deng Z, Zhang X (2018) Cognitive radio network with energy harvesting based on primary and secondary user signals. IEEE Access 6:9081–9090CrossRef
Zurück zum Zitat Yucek T, Arslan H (2009) A survey of spectrum sensing algorithms for cognitive radio applications. IEEE Commun Surv Tutor 11(1):116–130CrossRef Yucek T, Arslan H (2009) A survey of spectrum sensing algorithms for cognitive radio applications. IEEE Commun Surv Tutor 11(1):116–130CrossRef
Zurück zum Zitat Zhang R, Ho CK (2013) MIMO broadcasting for simultaneous wireless information and power transfer. IEEE Trans Wirel Commun 12(5):1989–2001CrossRef Zhang R, Ho CK (2013) MIMO broadcasting for simultaneous wireless information and power transfer. IEEE Trans Wirel Commun 12(5):1989–2001CrossRef
Zurück zum Zitat Zhang J, Zheng F-C, Gao X-Q, Zhu H-B (2014) Sensing-energy efficiency tradeoff for cognitive radio networks. IET Commun 8(18):3414–3423 Zhang J, Zheng F-C, Gao X-Q, Zhu H-B (2014) Sensing-energy efficiency tradeoff for cognitive radio networks. IET Commun 8(18):3414–3423
Metadaten
Titel
Cooperative Spectrum Sensing in Energy Harvesting Cognitive Radio Networks Under Diverse Distribution Models
verfasst von
Banani Talukdar
Deepak Kumar
Shanidul Hoque
Wasim Arif
Copyright-Jahr
2021
Verlag
Springer Singapore
DOI
https://doi.org/10.1007/978-981-15-6390-4_12

Neuer Inhalt