Skip to main content
Erschienen in: Clean Technologies and Environmental Policy 2/2013

01.04.2013 | Original Paper

Cost effective poly(urethane-imide)-POSS membranes for environmental and energy-related processes

verfasst von: D. Gnanasekaran, B. S. R. Reddy

Erschienen in: Clean Technologies and Environmental Policy | Ausgabe 2/2013

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The control of anthropogenic carbon dioxide (CO2) emissions is one of the most challenging environmental issues facing industrialized countries because of its implications to atmospheric CO2 levels and climatic change. Burning of fossil fuels is responsible for the majority of these CO2 emissions and, therefore, there is significant interest in developing technologies that will reduce CO2 emissions. The membrane-based separation processes are not only cost effective and environmentally friendly, but also with many novel polymeric materials available, offer much more versatility and simplicity in customized system designs. The ability to selectively pass one component in a mixture while rejecting others describes the perfect separation device. We have synthesized a set of poly(urethane-imide)-POSS (PUI) by the simple condensation reaction of isocyanate terminated polyurethane (PU) prepolymer and anhydride terminated polyimide (PI) prepolymer. The PUIs were characterized by TGA, SEM, and AFM analyses. Thermal stability of the PU was found to increase by the introduction of imide component. Gas permeation measurements were studied for O2, N2, and CO2 gases by employing different pressures using constant volume/variable pressure apparatus.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Baker R (2002) Future directions of membrane gas separation technology. Ind Eng Chem Res 41:1393–1411CrossRef Baker R (2002) Future directions of membrane gas separation technology. Ind Eng Chem Res 41:1393–1411CrossRef
Zurück zum Zitat Bos A, Punt IGM, Wessling M, Strathmann H (1998) Suppression of CO2-plasticization by semi-interpenetrating polymer network formation. J Polym Sci Part B: Polym Phys 36:1547–1556CrossRef Bos A, Punt IGM, Wessling M, Strathmann H (1998) Suppression of CO2-plasticization by semi-interpenetrating polymer network formation. J Polym Sci Part B: Polym Phys 36:1547–1556CrossRef
Zurück zum Zitat Cabral JT, Higgins JS, McLeish TCB, Strausser S, Magonov SN (2001) Bulk spinodal decomposition studied by atomic force microscopy and light scattering. Macromolecules 34:3748–3756CrossRef Cabral JT, Higgins JS, McLeish TCB, Strausser S, Magonov SN (2001) Bulk spinodal decomposition studied by atomic force microscopy and light scattering. Macromolecules 34:3748–3756CrossRef
Zurück zum Zitat Damian C, Espuche E, Escoubes M, Cuney S, Pascault JP (1997) Gas permeability of model polyurethane networks and hybrid organic–inorganic materials: relations with morphology. J Appl Polym Sci 65:2579–2587CrossRef Damian C, Espuche E, Escoubes M, Cuney S, Pascault JP (1997) Gas permeability of model polyurethane networks and hybrid organic–inorganic materials: relations with morphology. J Appl Polym Sci 65:2579–2587CrossRef
Zurück zum Zitat Duthie X, Kentish S, Powell C, Nagai K, Qiao G, Stevens G (2007) Operating temperature effects on plasticization of polyimide gas separation membranes. J Membr Sci 294:40–49CrossRef Duthie X, Kentish S, Powell C, Nagai K, Qiao G, Stevens G (2007) Operating temperature effects on plasticization of polyimide gas separation membranes. J Membr Sci 294:40–49CrossRef
Zurück zum Zitat Fritzsche A, Kurz J (1990) The separation of gases by membranes. In: Porter MC (ed) Handbook of industrial membrane technology. William Andrew Publishing, Noyes, pp 559–593 Fritzsche A, Kurz J (1990) The separation of gases by membranes. In: Porter MC (ed) Handbook of industrial membrane technology. William Andrew Publishing, Noyes, pp 559–593
Zurück zum Zitat Ganapathi-Desai S, Sikdar SK (2000) A polymer-ceramic composite membrane for recovering volatile organic compounds from wastewaters by pervaporation. Clean Prod Process 2:140–148CrossRef Ganapathi-Desai S, Sikdar SK (2000) A polymer-ceramic composite membrane for recovering volatile organic compounds from wastewaters by pervaporation. Clean Prod Process 2:140–148CrossRef
Zurück zum Zitat Gnanasekaran D, Madhavan K, Tsibouklis J, Reddy BSR (2011) Ring opening metathesis polymerization of polyoctahedral oligomeric silsesquioxanes (POSS) incorporated oxanorbornene-5,6- dicarboximide: synthesis, characterization, and surface morphology of copolymers. Austr J Chem 64:309–315CrossRef Gnanasekaran D, Madhavan K, Tsibouklis J, Reddy BSR (2011) Ring opening metathesis polymerization of polyoctahedral oligomeric silsesquioxanes (POSS) incorporated oxanorbornene-5,6- dicarboximide: synthesis, characterization, and surface morphology of copolymers. Austr J Chem 64:309–315CrossRef
Zurück zum Zitat Hill T (1956) Surface diffusion and thermal transpiration in fine tubes and pores. J Chem Phys 25:730–745CrossRef Hill T (1956) Surface diffusion and thermal transpiration in fine tubes and pores. J Chem Phys 25:730–745CrossRef
Zurück zum Zitat Huang SL, Lai JY (1995) On the gas permeability of hydroxyl terminated polybutadiene based polyurethane membranes. J Membr Sci 105:137–145CrossRef Huang SL, Lai JY (1995) On the gas permeability of hydroxyl terminated polybutadiene based polyurethane membranes. J Membr Sci 105:137–145CrossRef
Zurück zum Zitat Hwang ST, Kammermeyer K (1975) Membrane separations. Wiley, New York Hwang ST, Kammermeyer K (1975) Membrane separations. Wiley, New York
Zurück zum Zitat Jung KS, Keener TC, Khang SJ, Lee SK (2004) A technical and economic evaluation of CO2 separation from power plant flue gases with reclaimed Mg(OH)2. Clean Tech Environ Policy 6:201–212CrossRef Jung KS, Keener TC, Khang SJ, Lee SK (2004) A technical and economic evaluation of CO2 separation from power plant flue gases with reclaimed Mg(OH)2. Clean Tech Environ Policy 6:201–212CrossRef
Zurück zum Zitat Koros W (2002) Gas separation membranes: needs for combined materials science and processing approaches. Macromol Symp 188:13–22CrossRef Koros W (2002) Gas separation membranes: needs for combined materials science and processing approaches. Macromol Symp 188:13–22CrossRef
Zurück zum Zitat Lee YJ, Kuo SW, Huang WJ, Lee HY, Chang FC (2004) Miscibility, specific interactions, and self-assembly behavior of phenolic/polyhedral oligomeric silsesquioxane hybrids. J Polym Sci Part B: Polym Phy 42:1127–1136CrossRef Lee YJ, Kuo SW, Huang WJ, Lee HY, Chang FC (2004) Miscibility, specific interactions, and self-assembly behavior of phenolic/polyhedral oligomeric silsesquioxane hybrids. J Polym Sci Part B: Polym Phy 42:1127–1136CrossRef
Zurück zum Zitat Maiser G (1998) Gas separation with polymer membranes. Angew Chem Int Ed 37:2960–2974CrossRef Maiser G (1998) Gas separation with polymer membranes. Angew Chem Int Ed 37:2960–2974CrossRef
Zurück zum Zitat Nunes P, Peinemann KV, Ohlrogge K, Alpers A, Keller M, Pires ATN (1999) Membranes of poly(ether imide) and nanodispersed silica. J Membr Sci 157:219–226CrossRef Nunes P, Peinemann KV, Ohlrogge K, Alpers A, Keller M, Pires ATN (1999) Membranes of poly(ether imide) and nanodispersed silica. J Membr Sci 157:219–226CrossRef
Zurück zum Zitat Park MH, Jang W, Yang SJ, Shul Y, Han H (2006) Synthesis and characterization of new functional poly(urethane-imide) crosslinked networks. J Appl Polym Sci 100:113–123CrossRef Park MH, Jang W, Yang SJ, Shul Y, Han H (2006) Synthesis and characterization of new functional poly(urethane-imide) crosslinked networks. J Appl Polym Sci 100:113–123CrossRef
Zurück zum Zitat Paul D, Yampolskii Y (1994) Polymeric gas separation membranes. CRC Press, Baton Rouge Paul D, Yampolskii Y (1994) Polymeric gas separation membranes. CRC Press, Baton Rouge
Zurück zum Zitat Powell C, Qiao G (2006) Polymeric CO2/N2 gas separation membranes for the capture of carbon dioxide from power plant flue gases. J Membr Sci 279:1–49CrossRef Powell C, Qiao G (2006) Polymeric CO2/N2 gas separation membranes for the capture of carbon dioxide from power plant flue gases. J Membr Sci 279:1–49CrossRef
Zurück zum Zitat Rios-Dominguez Y, Ruiz-Trevino FA, Contreras-Reyes R, Gonzalez-Montiel A (2006) Syntheses and evaluation of gas transport properties in polystyrene-POSS membranes. J Membr Sci 271:94–100CrossRef Rios-Dominguez Y, Ruiz-Trevino FA, Contreras-Reyes R, Gonzalez-Montiel A (2006) Syntheses and evaluation of gas transport properties in polystyrene-POSS membranes. J Membr Sci 271:94–100CrossRef
Zurück zum Zitat Stern S (1994) Polymers for gas separation: the next decade. J Membr Sci 94:1–65CrossRef Stern S (1994) Polymers for gas separation: the next decade. J Membr Sci 94:1–65CrossRef
Zurück zum Zitat Viville L, Biscarini F, Bredas JL, Lazzaroni R (2001) Scaling aspects of the kinetics of thermally induced phase separation in bisphenol A polycarbonate/poly(methyl methacrylate) blends. J Phys Chem B 105:7499–7507CrossRef Viville L, Biscarini F, Bredas JL, Lazzaroni R (2001) Scaling aspects of the kinetics of thermally induced phase separation in bisphenol A polycarbonate/poly(methyl methacrylate) blends. J Phys Chem B 105:7499–7507CrossRef
Zurück zum Zitat Yang YR, Wang ZF, Wang DN, Wang B, Hu CP (2004) Relationship between carbon dioxide transport, free volume and morphology of polyolefin-based polyurethanes. Polym Int 53:931–936CrossRef Yang YR, Wang ZF, Wang DN, Wang B, Hu CP (2004) Relationship between carbon dioxide transport, free volume and morphology of polyolefin-based polyurethanes. Polym Int 53:931–936CrossRef
Zurück zum Zitat Yoshino M, Ito K, Kita H, Okamoto KI (2000) Effects of hard-segment polymers on CO2/N2 gas-separation properties of poly(ethylene oxide)-segmented. J Polym Sci Part B: Polym Phys 38:1707–1715CrossRef Yoshino M, Ito K, Kita H, Okamoto KI (2000) Effects of hard-segment polymers on CO2/N2 gas-separation properties of poly(ethylene oxide)-segmented. J Polym Sci Part B: Polym Phys 38:1707–1715CrossRef
Metadaten
Titel
Cost effective poly(urethane-imide)-POSS membranes for environmental and energy-related processes
verfasst von
D. Gnanasekaran
B. S. R. Reddy
Publikationsdatum
01.04.2013
Verlag
Springer-Verlag
Erschienen in
Clean Technologies and Environmental Policy / Ausgabe 2/2013
Print ISSN: 1618-954X
Elektronische ISSN: 1618-9558
DOI
https://doi.org/10.1007/s10098-012-0500-7

Weitere Artikel der Ausgabe 2/2013

Clean Technologies and Environmental Policy 2/2013 Zur Ausgabe