Skip to main content
Erschienen in: The International Journal of Life Cycle Assessment 10/2020

15.08.2020 | LIFE CYCLE SUSTAINABILITY ASSESSMENT

Costructal law, exergy analysis and life cycle energy sustainability assessment: an expanded framework applied to a boiler

verfasst von: Francesco Guarino, Maurizio Cellura, Marzia Traverso

Erschienen in: The International Journal of Life Cycle Assessment | Ausgabe 10/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Purpose

Life cycle sustainability assessment (LCSA) is one of the most relevant tools delving in sustainability science, based currently on the triple bottom line idea that is defined as the contemporary implementation of the three tools of life cycle assessment (LCA), life cycle costing (LCC) and social life cycle assessment (S-LCA). The methodology is currently being applied to a wide set of products and systems. However, as per in the large interest towards energy-related products, the sustainability assessment of energy systems—in particular those where fluid streams are used—could be more effective if some further stages could be included in the analysis, i.e. a process level analysis with regard to energy quality and exergy, and a more thorough energy analysis of the fluid flows available to achieve an optimal design of the system.

Methods

This paper proposes an extended framework for LCSA introducing two additional stages to the methodology: Constructal law (CL) inspired analysis of the energy design of the system and exergy analysis (EA) of the system and its life cycle. A fully developed case study (a biomass boiler) is proposed, described the extended life cycle energy and sustainability assessment (LCESA: LCA, LCC, S-LCA, CL, EA), highlighting both the quantitative results related to each section together with the strengths and limits of the methodology, while stressing the potential applications as, e.g., decision support tool and support to the design of energy system.

Results

The results highlight different and optimized designs for the boiler through a constructal law–based analysis and several hot-spots throughout different stages of the life cycle, ranging from the production stage of steel for most environmental indicators in LCA to the cooking stage for the exergy analysis. Relevant positive impacts are traced also in the S-LCA point of view during both the use and production step.

Conclusions

The methodology could represent a potential advancement towards the LCSA application to energy technologies as it highlights some limits and proposes specific advancements.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Ardente F, Beccali G, Cellura M (2003) Eco-sustainable energy and environmental strategies in design for recycling: the software “ENDLESS”. Ecol Model 163(1–2):101–118CrossRef Ardente F, Beccali G, Cellura M (2003) Eco-sustainable energy and environmental strategies in design for recycling: the software “ENDLESS”. Ecol Model 163(1–2):101–118CrossRef
Zurück zum Zitat Author (n.d.-c) Sonia Valdivia and Guido Sonnermann - Towards a life cycle sustainability assessment, making informed choices on products – UNEP ISBN: 978–92–807-3175-0 Author (n.d.-c) Sonia Valdivia and Guido Sonnermann - Towards a life cycle sustainability assessment, making informed choices on products – UNEP ISBN: 978–92–807-3175-0
Zurück zum Zitat Beccali M, Cellura M, Longo S, Guarino F (2016) Solar heating and cooling systems versus conventional systems assisted by photovoltaic: application of a simplified LCA tool. Sol Energ Mat Sol C 156:92–100CrossRef Beccali M, Cellura M, Longo S, Guarino F (2016) Solar heating and cooling systems versus conventional systems assisted by photovoltaic: application of a simplified LCA tool. Sol Energ Mat Sol C 156:92–100CrossRef
Zurück zum Zitat Bejan A, Lorente S (2008) Design with constructal theory. Wiley, Hoboken, p 2008CrossRef Bejan A, Lorente S (2008) Design with constructal theory. Wiley, Hoboken, p 2008CrossRef
Zurück zum Zitat Blanco JM, Lehmann A, Muñoz P, Antón A, Traverso M, Rieradevall J, Finkbeiner M (2014) Application challenges for the social life cycle assessment of fertilizers within life cycle sustainability assessment. J Clean Prod 69:34–48CrossRef Blanco JM, Lehmann A, Muñoz P, Antón A, Traverso M, Rieradevall J, Finkbeiner M (2014) Application challenges for the social life cycle assessment of fertilizers within life cycle sustainability assessment. J Clean Prod 69:34–48CrossRef
Zurück zum Zitat Bösch ME, Hellweg S, Huijbregts MAJ, Frischknecht R (2007) Applying cumulative exergy demand (CExD) indicators to the ecoinvent database. Int J Life Cycle Assess 12:181–190CrossRef Bösch ME, Hellweg S, Huijbregts MAJ, Frischknecht R (2007) Applying cumulative exergy demand (CExD) indicators to the ecoinvent database. Int J Life Cycle Assess 12:181–190CrossRef
Zurück zum Zitat Catrini P, Cellura M, Guarino F, Panno D, Piacentino A (2018) An integrated approach based on life cycle assessment and thermoeconomics: application to a water-cooled chiller for an air conditioning plant. Energy 160:72–86CrossRef Catrini P, Cellura M, Guarino F, Panno D, Piacentino A (2018) An integrated approach based on life cycle assessment and thermoeconomics: application to a water-cooled chiller for an air conditioning plant. Energy 160:72–86CrossRef
Zurück zum Zitat Dekoninck EA, Domingo L, O’Hare JA, Pigosso DCA, Reyes T, Troussier N (2016) Defining the challenges for ecodesign implementation in companies: development and consolidation of a framework. J Clean Prod 135:410–425 ISSN 0959–6526CrossRef Dekoninck EA, Domingo L, O’Hare JA, Pigosso DCA, Reyes T, Troussier N (2016) Defining the challenges for ecodesign implementation in companies: development and consolidation of a framework. J Clean Prod 135:410–425 ISSN 0959–6526CrossRef
Zurück zum Zitat Directive 2009/125/EC of the European Parliament and of the Council of 21 October 2009 establishing a framework for the setting of ecodesign requirements for energy-related products Directive 2009/125/EC of the European Parliament and of the Council of 21 October 2009 establishing a framework for the setting of ecodesign requirements for energy-related products
Zurück zum Zitat EN 15804 (2012) Sustainability of construction works, environmental product declarations, core rules for the product category of construction products EN 15804 (2012) Sustainability of construction works, environmental product declarations, core rules for the product category of construction products
Zurück zum Zitat European Commission, DG Joint Research Centre e Institute for Environment and Sustainability (2008) European Life Cycle Data Network European Commission, DG Joint Research Centre e Institute for Environment and Sustainability (2008) European Life Cycle Data Network
Zurück zum Zitat European Commission, DG Joint Research Centre e Institute for Environment and Sustainability, 2012 Characterization factors of the ILCD recommended life cycle impact assessment methods. Database and Supporting Information, first ed. Luxembourg Publications Office of the European Union. EUR 25167 European Commission, DG Joint Research Centre e Institute for Environment and Sustainability, 2012 Characterization factors of the ILCD recommended life cycle impact assessment methods. Database and Supporting Information, first ed. Luxembourg Publications Office of the European Union. EUR 25167
Zurück zum Zitat European Commission, DG Joint Research Centre, Institute for Environment and Sustainability 2011 ILCD handbook e recommendations for life cycle impact assessment in the European context e based on existing environmental impact assessment models and factors. Available on: http://lct.jrc.ec.europa.eu/ European Commission, DG Joint Research Centre, Institute for Environment and Sustainability 2011 ILCD handbook e recommendations for life cycle impact assessment in the European context e based on existing environmental impact assessment models and factors. Available on: http://​lct.​jrc.​ec.​europa.​eu/​
Zurück zum Zitat Fernandes de Magalhães R, de Moura Ferreira Danilevicz A, Palazzo J (2019) Managing trade-offs in complex scenarios: a decision-making tool for sustainability projects. J Clean Prod 212:447–460 ISSN 0959-6526CrossRef Fernandes de Magalhães R, de Moura Ferreira Danilevicz A, Palazzo J (2019) Managing trade-offs in complex scenarios: a decision-making tool for sustainability projects. J Clean Prod 212:447–460 ISSN 0959-6526CrossRef
Zurück zum Zitat Finocchiaro P, Beccali M, Cellura M, Guarino F, Longo S (2016) Life cycle assessment of a compact desiccant evaporative cooling system: the case study of the “Freescoo”. Sol Energ Mat Sol C 156:83–91CrossRef Finocchiaro P, Beccali M, Cellura M, Guarino F, Longo S (2016) Life cycle assessment of a compact desiccant evaporative cooling system: the case study of the “Freescoo”. Sol Energ Mat Sol C 156:83–91CrossRef
Zurück zum Zitat Guarino F, Traverso M, Cellura M, Finkbeiner M The use phase in social life cycle assessment: a case study of a biomass boiler. Proceedings of 1st Latin American SDEWES Conference, Rio de Janeiro, Brazil, 28–31 2018 Guarino F, Traverso M, Cellura M, Finkbeiner M The use phase in social life cycle assessment: a case study of a biomass boiler. Proceedings of 1st Latin American SDEWES Conference, Rio de Janeiro, Brazil, 28–31 2018
Zurück zum Zitat Gulotta TM, Guarino F, Cellura M, Lorenzini G (2018) A constructal law optimization of a boiler inspired by life cycle thinking. Thermal Sci Eng Progress 6:380–387CrossRef Gulotta TM, Guarino F, Cellura M, Lorenzini G (2018) A constructal law optimization of a boiler inspired by life cycle thinking. Thermal Sci Eng Progress 6:380–387CrossRef
Zurück zum Zitat Inabez Forés V, Bovea MD, Perez-Belis V (2014) A holistic review of applied methodologies for assessing and selecting the optimal technological alternative from a sustainability perspective. J Clean Prod 70:259–281CrossRef Inabez Forés V, Bovea MD, Perez-Belis V (2014) A holistic review of applied methodologies for assessing and selecting the optimal technological alternative from a sustainability perspective. J Clean Prod 70:259–281CrossRef
Zurück zum Zitat Incropera FP, DeWitt D, and Bergman T “Fundamentals of heat and mass transfer,” J. W. SONS, Ed., seventh ed, (2011), pp. 468–476;517–593 Incropera FP, DeWitt D, and Bergman T “Fundamentals of heat and mass transfer,” J. W. SONS, Ed., seventh ed, (2011), pp. 468–476;517–593
Zurück zum Zitat ISO 14040 2006 Environmental management e life cycle assessment e principles and framework. European Committee for Standardization ISO 14040 2006 Environmental management e life cycle assessment e principles and framework. European Committee for Standardization
Zurück zum Zitat ISO 14044 2006 Environmental management e life cycle assessment e requirements and guidelines. European Committee for Standardization ISO 14044 2006 Environmental management e life cycle assessment e requirements and guidelines. European Committee for Standardization
Zurück zum Zitat ISO 21930 (2007) Sustainability in building construction—environmental declaration of building products ISO 21930 (2007) Sustainability in building construction—environmental declaration of building products
Zurück zum Zitat Kates RW et al (2001) Environment and development: sustainability science. Science 292:64CrossRef Kates RW et al (2001) Environment and development: sustainability science. Science 292:64CrossRef
Zurück zum Zitat Kloepffer W (2007) Life cycle based sustainability assessment as part of LCM. IN proceedings of the 3rd International Conference on Life Cycle Management, Zurich, Switzerland, 27–29 Kloepffer W (2007) Life cycle based sustainability assessment as part of LCM. IN proceedings of the 3rd International Conference on Life Cycle Management, Zurich, Switzerland, 27–29
Zurück zum Zitat Kloepffer W (2008a) Life cycle sustainability assessment of products. Int J Life Cycle Assess 13:89–95CrossRef Kloepffer W (2008a) Life cycle sustainability assessment of products. Int J Life Cycle Assess 13:89–95CrossRef
Zurück zum Zitat Kloepffer W (2008b) Life cycle sustainability assessment of products (with comments by Helias A. Udo de HAes p95). Int J LCA 13(2):89–95CrossRef Kloepffer W (2008b) Life cycle sustainability assessment of products (with comments by Helias A. Udo de HAes p95). Int J LCA 13(2):89–95CrossRef
Zurück zum Zitat Lamé G, Leroy Y, Yannou B (2017) Ecodesign tools in the construction sector: analyzing usage inadequacies with designers’ needs. J Clean Prod 148:60–72 ISSN 0959–6526CrossRef Lamé G, Leroy Y, Yannou B (2017) Ecodesign tools in the construction sector: analyzing usage inadequacies with designers’ needs. J Clean Prod 148:60–72 ISSN 0959–6526CrossRef
Zurück zum Zitat Lorenzini G, Moretti S (2009) A Bejan’s constructal theory approach to the overall optimization of heat exchanging finned modules with air in forced convection and laminar flow condition. J Heat Transf 131(8):2009CrossRef Lorenzini G, Moretti S (2009) A Bejan’s constructal theory approach to the overall optimization of heat exchanging finned modules with air in forced convection and laminar flow condition. J Heat Transf 131(8):2009CrossRef
Zurück zum Zitat Lorenzini G, Moretti S, Conti A (2011) Fin shape optimization using Bejan’s constructal theory. Morgan & Claypool Publishers, San FranciscoCrossRef Lorenzini G, Moretti S, Conti A (2011) Fin shape optimization using Bejan’s constructal theory. Morgan & Claypool Publishers, San FranciscoCrossRef
Zurück zum Zitat Ness B et al (2007) Categorising tools for sustainability assessment. Ecol Econ Ness B et al (2007) Categorising tools for sustainability assessment. Ecol Econ
Zurück zum Zitat Nzila C, Dewulf J, Spanjers H, Tuigong D, Kiriamiti H, Van Langenhove H (2012) Multi criteria sustainability assessment of biogas production in Kenya. Appl Energ 93:496–506CrossRef Nzila C, Dewulf J, Spanjers H, Tuigong D, Kiriamiti H, Van Langenhove H (2012) Multi criteria sustainability assessment of biogas production in Kenya. Appl Energ 93:496–506CrossRef
Zurück zum Zitat Regulation (EU) 2017/1369 of the European Parliament and of the Council of 4 July 2017 setting a framework for energy labelling and repealing Directive 2010/30/EU (Text with EEA relevance) Regulation (EU) 2017/1369 of the European Parliament and of the Council of 4 July 2017 setting a framework for energy labelling and repealing Directive 2010/30/EU (Text with EEA relevance)
Zurück zum Zitat Rocha LAO, Lorente S, Bejan A (2012) Constructal law and the unifying principle of design. Springer, New York Rocha LAO, Lorente S, Bejan A (2012) Constructal law and the unifying principle of design. Springer, New York
Zurück zum Zitat Rossi M, Germani M, Zamagni A (2016) Review of ecodesign methods and tools. Barriers and strategies for an effective implementation in industrial companies. J Clean Prod 129:361–373 ISSN 0959-6526CrossRef Rossi M, Germani M, Zamagni A (2016) Review of ecodesign methods and tools. Barriers and strategies for an effective implementation in industrial companies. J Clean Prod 129:361–373 ISSN 0959-6526CrossRef
Zurück zum Zitat Sala S, Farioli F, Zamagni A (2013a) Progress in sustainability science: lessons learnt from current methodologies for sustainability assessment: part 1. Int J Life Cycle Assess 18:1653–1672CrossRef Sala S, Farioli F, Zamagni A (2013a) Progress in sustainability science: lessons learnt from current methodologies for sustainability assessment: part 1. Int J Life Cycle Assess 18:1653–1672CrossRef
Zurück zum Zitat Sala S, Farioli F, Zamagni A (2013b) Life cycle sustainability assessment in the context of sustainability science progress. Int J Life Cycle Assess 18(9):1686–1697CrossRef Sala S, Farioli F, Zamagni A (2013b) Life cycle sustainability assessment in the context of sustainability science progress. Int J Life Cycle Assess 18(9):1686–1697CrossRef
Zurück zum Zitat Singh RK, Murty HR, Gupta SK, Dikshit AK (2012) An overview of sustainability assessment methodologies. Ecol Indic 15:281–299CrossRef Singh RK, Murty HR, Gupta SK, Dikshit AK (2012) An overview of sustainability assessment methodologies. Ecol Indic 15:281–299CrossRef
Zurück zum Zitat Swarr TE, Hunkeler D, Klöpffer W, Pesonen HL, Ciroth A, Brent CA, Pagan R (2011) Environmental life-cycle costing: a code of practice. Int J LCA 16:389–391CrossRef Swarr TE, Hunkeler D, Klöpffer W, Pesonen HL, Ciroth A, Brent CA, Pagan R (2011) Environmental life-cycle costing: a code of practice. Int J LCA 16:389–391CrossRef
Zurück zum Zitat Traverso M, Finkbeiner M, Jørgensen A, Schneider L (2012a) Life cycle sustainability dashboard. J Ind Ecol Traverso M, Finkbeiner M, Jørgensen A, Schneider L (2012a) Life cycle sustainability dashboard. J Ind Ecol
Zurück zum Zitat UNEP (2009) Guidelines for social life cycle assessment of products. Environ. Program UNEP (2009) Guidelines for social life cycle assessment of products. Environ. Program
Zurück zum Zitat WCED – World Commission on Environment and Development (1987) Our common future. Oxford WCED – World Commission on Environment and Development (1987) Our common future. Oxford
Zurück zum Zitat Zamagni A, Amerighi O, Buttol P (2011) Strenghts or bias in social LCA? Int J Life Cycle Assess 16(7):596–598CrossRef Zamagni A, Amerighi O, Buttol P (2011) Strenghts or bias in social LCA? Int J Life Cycle Assess 16(7):596–598CrossRef
Metadaten
Titel
Costructal law, exergy analysis and life cycle energy sustainability assessment: an expanded framework applied to a boiler
verfasst von
Francesco Guarino
Maurizio Cellura
Marzia Traverso
Publikationsdatum
15.08.2020
Verlag
Springer Berlin Heidelberg
Erschienen in
The International Journal of Life Cycle Assessment / Ausgabe 10/2020
Print ISSN: 0948-3349
Elektronische ISSN: 1614-7502
DOI
https://doi.org/10.1007/s11367-020-01779-9

Weitere Artikel der Ausgabe 10/2020

The International Journal of Life Cycle Assessment 10/2020 Zur Ausgabe