Skip to main content

2024 | OriginalPaper | Buchkapitel

Coupling Control of Sideslip and Yaw Rate for Distributed Drive Vehicles via Torque Vector Control

verfasst von : Xuanming Zhao, Xiaoxia Du, Jiayong Liu, Guoying Chen, Yongqiang Zhao, Jun Yao, Lei He

Erschienen in: Proceedings of China SAE Congress 2023: Selected Papers

Verlag: Springer Nature Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Distributed drive vehicles, being typical over-actuated systems, hold immense potential in enhancing vehicle maneuverability and safety through the utilization of the four-wheel independent drive capability. This paper introduced a torque vector control (TVC) algorithm aimed at maximizing tire force utilization for each wheel and achieving coupled control of sideslip angle and yaw rate. The research begins by analyzing the steering hysteresis characteristics of the vehicle, proposing a crucial yaw rate to establish a dependable stability boundary. Employing a phase portrait analysis method, it determines the sideslip angle stability boundary and computes the target value essential for configuring the reference targets within the TVC algorithm. Subsequently, a hierarchical torque vector controller is devised, comprising three distinct components: The longitudinal force distribution layer focuses on achieving the road adhesion limit concurrently for the front and rear axles, optimizing their capabilities. The additional yaw moment control layer utilizes model predictive control to generate supplementary yaw moments for the vehicle. The wheel torque regulation layer integrates additional yaw moments, longitudinal drive force distribution requirements, and other constraints to efficiently distribute four-wheel torque based on the optimal tire adhesion rate. Ultimately, the effectiveness of the TVC algorithm is rigorously assessed through a representative experimental scenario.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Tahouni, A., Mirzaei, M., Najjari, B.: Novel constrained nonlinear control of vehicle dynamics using integrated active torque vectoring and electronic stability control. IEEE Trans. Veh. Technol. 68(10), 9564–9572 (2019)CrossRef Tahouni, A., Mirzaei, M., Najjari, B.: Novel constrained nonlinear control of vehicle dynamics using integrated active torque vectoring and electronic stability control. IEEE Trans. Veh. Technol. 68(10), 9564–9572 (2019)CrossRef
2.
Zurück zum Zitat Zhang, L., Ding, H., Huang, Y., Chen, H., Guo, K., Li, Q.: An analytical approach to improve vehicle maneuverability via torque vectoring control: theoretical study and experimental validation. IEEE Trans. Veh. Technol. 68(5), 4514–4526 (2019)CrossRef Zhang, L., Ding, H., Huang, Y., Chen, H., Guo, K., Li, Q.: An analytical approach to improve vehicle maneuverability via torque vectoring control: theoretical study and experimental validation. IEEE Trans. Veh. Technol. 68(5), 4514–4526 (2019)CrossRef
3.
Zurück zum Zitat Zhang, L., et al.: An adaptive backstepping sliding mode controller to improve vehicle maneuverability and stability via torque vectoring control. IEEE Trans. Veh. Technol. 69(3), 2598–2612 (2020)CrossRef Zhang, L., et al.: An adaptive backstepping sliding mode controller to improve vehicle maneuverability and stability via torque vectoring control. IEEE Trans. Veh. Technol. 69(3), 2598–2612 (2020)CrossRef
4.
Zurück zum Zitat Zhang, L., Chen, H., Huang, Y., Wang, P., Guo, K.: Human-centered torque vectoring control for distributed drive electric vehicle considering driving characteristics. IEEE Trans. Veh. Technol. 70(8), 7386–7399 (2021)CrossRef Zhang, L., Chen, H., Huang, Y., Wang, P., Guo, K.: Human-centered torque vectoring control for distributed drive electric vehicle considering driving characteristics. IEEE Trans. Veh. Technol. 70(8), 7386–7399 (2021)CrossRef
5.
Zurück zum Zitat Liang, Z., Zhao, J., Dong, Z., Wang, Y., Ding, Z.: Torque vectoring and rear-wheel-steering control for vehicle’s uncertain slips on soft and slope terrain using sliding mode algorithm. IEEE Trans. Veh. Technol. 69(4), 3805–3815 (2020)CrossRef Liang, Z., Zhao, J., Dong, Z., Wang, Y., Ding, Z.: Torque vectoring and rear-wheel-steering control for vehicle’s uncertain slips on soft and slope terrain using sliding mode algorithm. IEEE Trans. Veh. Technol. 69(4), 3805–3815 (2020)CrossRef
6.
Zurück zum Zitat Ren, Y., Zheng, L., Khajepour, A.: Integrated model predictive and torque vectoring control for path tracking of 4-wheel-driven autonomous vehicles. IET Intell. Transp. Syst. 13(1), 98–107 (2019) Ren, Y., Zheng, L., Khajepour, A.: Integrated model predictive and torque vectoring control for path tracking of 4-wheel-driven autonomous vehicles. IET Intell. Transp. Syst. 13(1), 98–107 (2019)
7.
Zurück zum Zitat Kasinathan, D., Kasaiezadeh, A., Wong, A., Khajepour, A., Chen, S.K., Litkouhi, B.: An optimal torque vectoring control for vehicle applications via real-time constraints. IEEE Trans. Veh. Technol. 65(6), 4368–4378 (2016)CrossRef Kasinathan, D., Kasaiezadeh, A., Wong, A., Khajepour, A., Chen, S.K., Litkouhi, B.: An optimal torque vectoring control for vehicle applications via real-time constraints. IEEE Trans. Veh. Technol. 65(6), 4368–4378 (2016)CrossRef
8.
Zurück zum Zitat Morera-Torres, E., Ocampo-Martinez, C., Bianchi, F.D.: Experimental modelling and optimal torque vectoring control for 4WD vehicles. IEEE Trans. Veh. Technol. 71(5), 4922–4932 (2022)CrossRef Morera-Torres, E., Ocampo-Martinez, C., Bianchi, F.D.: Experimental modelling and optimal torque vectoring control for 4WD vehicles. IEEE Trans. Veh. Technol. 71(5), 4922–4932 (2022)CrossRef
9.
Zurück zum Zitat Zhang, W., Wang, Z., Drugge, L., Nybacka, M.: Evaluating model predictive path following and yaw stability controllers for over-actuated autonomous electric vehicles. IEEE Trans. Veh. Technol. 69(11), 12807–12821 (2020)CrossRef Zhang, W., Wang, Z., Drugge, L., Nybacka, M.: Evaluating model predictive path following and yaw stability controllers for over-actuated autonomous electric vehicles. IEEE Trans. Veh. Technol. 69(11), 12807–12821 (2020)CrossRef
10.
Zurück zum Zitat Chatzikomis, C., Sorniotti, A., Gruber, P., Zanchetta, M., Willans, D., Balcombe, B.: Comparison of path tracking and torque-vectoring controllers for autonomous electric vehicles. IEEE Trans. Intell. Veh. 3(4), 559–570 (2018)CrossRef Chatzikomis, C., Sorniotti, A., Gruber, P., Zanchetta, M., Willans, D., Balcombe, B.: Comparison of path tracking and torque-vectoring controllers for autonomous electric vehicles. IEEE Trans. Intell. Veh. 3(4), 559–570 (2018)CrossRef
11.
Zurück zum Zitat Novellis, L.D., Sorniotti, A., Gruber, P., Pennycott, A.: Comparison of feedback control techniques for torque-vectoring control of fully electric vehicles. IEEE Trans. Veh. Technol. 63(8), 3612–3623 (2014)CrossRef Novellis, L.D., Sorniotti, A., Gruber, P., Pennycott, A.: Comparison of feedback control techniques for torque-vectoring control of fully electric vehicles. IEEE Trans. Veh. Technol. 63(8), 3612–3623 (2014)CrossRef
12.
Zurück zum Zitat Chatzikomis, C., et al.: An energy-efficient torque-vectoring algorithm for electric vehicles with multiple motors. Mech. Syst. Signal Process. 128, 655–673 (2019) Chatzikomis, C., et al.: An energy-efficient torque-vectoring algorithm for electric vehicles with multiple motors. Mech. Syst. Signal Process. 128, 655–673 (2019)
13.
Zurück zum Zitat Liu, H., Zhang, L., Wang, P., Chen, H.: A real-time NMPC strategy for electric vehicle stability improvement combining torque vectoring with rear-wheel steering. IEEE Trans. Transp. Electr. 8(3), 3825–3835 (2022)CrossRef Liu, H., Zhang, L., Wang, P., Chen, H.: A real-time NMPC strategy for electric vehicle stability improvement combining torque vectoring with rear-wheel steering. IEEE Trans. Transp. Electr. 8(3), 3825–3835 (2022)CrossRef
14.
Zurück zum Zitat Hu, X., Chen, H., Li, Z., Wang, P.: An energy-saving torque vectoring control strategy for electric vehicles considering handling stability under extreme conditions. IEEE Trans. Veh. Technol. 69(10), 10787–10796 (2020)CrossRef Hu, X., Chen, H., Li, Z., Wang, P.: An energy-saving torque vectoring control strategy for electric vehicles considering handling stability under extreme conditions. IEEE Trans. Veh. Technol. 69(10), 10787–10796 (2020)CrossRef
15.
Zurück zum Zitat Chen, G., Yao, J., Hu, H., Gao, Z., He, L., Zheng, X.: Design and experimental evaluation of an efficient MPC-based lateral motion controller considering path preview for autonomous vehicles. Control Eng. Pract. 123, 105164 (2022) Chen, G., Yao, J., Hu, H., Gao, Z., He, L., Zheng, X.: Design and experimental evaluation of an efficient MPC-based lateral motion controller considering path preview for autonomous vehicles. Control Eng. Pract. 123, 105164 (2022)
17.
Zurück zum Zitat Fukada, Y.: Slip-angle estimation for vehicle stability control. Veh. Syst. Dyn. 32(4–5), 375–388 (1999) Fukada, Y.: Slip-angle estimation for vehicle stability control. Veh. Syst. Dyn. 32(4–5), 375–388 (1999)
Metadaten
Titel
Coupling Control of Sideslip and Yaw Rate for Distributed Drive Vehicles via Torque Vector Control
verfasst von
Xuanming Zhao
Xiaoxia Du
Jiayong Liu
Guoying Chen
Yongqiang Zhao
Jun Yao
Lei He
Copyright-Jahr
2024
Verlag
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-97-0252-7_56

    Premium Partner