Skip to main content
Erschienen in: Journal of Materials Engineering and Performance 10/2014

01.10.2014

Creep Behavior of Hydrogenated Zirconium Alloys

verfasst von: A. Sarkar, K. Boopathy, J. Eapen, K. L. Murty

Erschienen in: Journal of Materials Engineering and Performance | Ausgabe 10/2014

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Zirconium (Zr) alloys are the primary structural materials of most water reactors. Creep is considered to be one of the important degradation mechanisms of Zr alloys during reactor operating and repository conditions. Zr alloys pick up hydrogen (H2) during their service from the coolant water. Hydrogen can be present in solid solution or precipitated hydride form in Zr alloys depending upon the temperature and concentration. This study reviews the effect of hydrogen on creep behavior of Zr alloys used in the water reactors.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat K. Linga Murty and I. Charit, Texture Development and Anisotropic Deformation of Zircaloys, Prog. Nucl. Energy, 2006, 48(4), p 325–359CrossRef K. Linga Murty and I. Charit, Texture Development and Anisotropic Deformation of Zircaloys, Prog. Nucl. Energy, 2006, 48(4), p 325–359CrossRef
2.
Zurück zum Zitat A.T. Motta et al., Zirconium Alloys for Supercritical Water Reactor Applications: Challenges and Possibilities, J. Nucl. Mater., 2007, 371(1–3), p 61–75CrossRef A.T. Motta et al., Zirconium Alloys for Supercritical Water Reactor Applications: Challenges and Possibilities, J. Nucl. Mater., 2007, 371(1–3), p 61–75CrossRef
3.
Zurück zum Zitat S. Banerjee and P. Mukhopadhyay, Phase Transformations: Examples from Titanium and Zirconium Alloys, Vol 12, Elsevier Science, Oxford, 2010 S. Banerjee and P. Mukhopadhyay, Phase Transformations: Examples from Titanium and Zirconium Alloys, Vol 12, Elsevier Science, Oxford, 2010
4.
Zurück zum Zitat G. Östberg, Determination of Hydride Solubility in Alpha Phase Zirconium, Zircaloy-2 and Zircaloy 4, J. Nucl. Mater., 1962, 5(2), p 208–215CrossRef G. Östberg, Determination of Hydride Solubility in Alpha Phase Zirconium, Zircaloy-2 and Zircaloy 4, J. Nucl. Mater., 1962, 5(2), p 208–215CrossRef
5.
Zurück zum Zitat R. Singh et al., Terminal Solid Solubility of Hydrogen in Zr-Alloy Pressure Tube Materials, J. Alloy. Compd., 2005, 389(1), p 102–112CrossRef R. Singh et al., Terminal Solid Solubility of Hydrogen in Zr-Alloy Pressure Tube Materials, J. Alloy. Compd., 2005, 389(1), p 102–112CrossRef
6.
Zurück zum Zitat M.P. Puls, The Effect of Hydrogen and Hydrides on the Integrity of Zirconium Alloy Components: Delayed Hydride Cracking, Springer, New York, 2012CrossRef M.P. Puls, The Effect of Hydrogen and Hydrides on the Integrity of Zirconium Alloy Components: Delayed Hydride Cracking, Springer, New York, 2012CrossRef
7.
Zurück zum Zitat R.N. Singh et al., Temperature Dependence of Misfit Strains of δ-Hydrides of Zirconium, J. Alloy. Compd., 2007, 436(1), p 150–154CrossRef R.N. Singh et al., Temperature Dependence of Misfit Strains of δ-Hydrides of Zirconium, J. Alloy. Compd., 2007, 436(1), p 150–154CrossRef
8.
Zurück zum Zitat K.L. Murty, Materials Ageing and Degradation in Light Water Reactors: Mechanisms and Management, Elsevier, Amsterdam, 2013CrossRef K.L. Murty, Materials Ageing and Degradation in Light Water Reactors: Mechanisms and Management, Elsevier, Amsterdam, 2013CrossRef
9.
Zurück zum Zitat C. Chow et al., Case Histories Involving Fatigue and Fracture Mechanics, American Society for Testing and Materials, Philadelphia, 1986, p 389–416 C. Chow et al., Case Histories Involving Fatigue and Fracture Mechanics, American Society for Testing and Materials, Philadelphia, 1986, p 389–416
10.
Zurück zum Zitat K. Chan, A Micromechanical Model for Predicting Hydride Embrittlement in Nuclear Fuel Cladding Material, J. Nucl. Mater., 1996, 227(3), p 220–236CrossRef K. Chan, A Micromechanical Model for Predicting Hydride Embrittlement in Nuclear Fuel Cladding Material, J. Nucl. Mater., 1996, 227(3), p 220–236CrossRef
11.
Zurück zum Zitat R. Singh et al., Delayed Hydride Cracking in Zr-2.5Nb Pressure Tube Material, J. Nucl. Mater., 2002, 304(2), p 189–203CrossRef R. Singh et al., Delayed Hydride Cracking in Zr-2.5Nb Pressure Tube Material, J. Nucl. Mater., 2002, 304(2), p 189–203CrossRef
12.
Zurück zum Zitat R. Singh et al., Delayed Hydride Cracking in Zr-2.5Nb Pressure Tube Material: Influence of Fabrication Routes, Mater. Sci. Eng. A, 2004, 374(1), p 342–350CrossRef R. Singh et al., Delayed Hydride Cracking in Zr-2.5Nb Pressure Tube Material: Influence of Fabrication Routes, Mater. Sci. Eng. A, 2004, 374(1), p 342–350CrossRef
13.
Zurück zum Zitat R. Singh et al., Influence of Hydrogen Content on Impact Toughness of Zr-2.5Nb Pressure Tube Alloy, Nucl. Eng. Des., 2011, 241(7), p 2425–2436CrossRef R. Singh et al., Influence of Hydrogen Content on Impact Toughness of Zr-2.5Nb Pressure Tube Alloy, Nucl. Eng. Des., 2011, 241(7), p 2425–2436CrossRef
14.
Zurück zum Zitat P. Efsing and K. Pettersson, The Influence of Temperature and Yield Strength on Delayed Hydride Cracking in Hydrided Zircaloy-2, ASTM Spec. Tech. Publ., 1996, 1295, p 394–403 P. Efsing and K. Pettersson, The Influence of Temperature and Yield Strength on Delayed Hydride Cracking in Hydrided Zircaloy-2, ASTM Spec. Tech. Publ., 1996, 1295, p 394–403
15.
Zurück zum Zitat J. Wei, Effect of Hydrogen on the Corrosion Performance of Zirconium Alloys, The University of Manchester, Manchester, 2012 J. Wei, Effect of Hydrogen on the Corrosion Performance of Zirconium Alloys, The University of Manchester, Manchester, 2012
16.
Zurück zum Zitat K. Murty, The Internal Pressurization Creep of Zr Alloys for Spent-Fuel Dry Storage Feasibility, JOM, 2000, 52(9), p 34–38CrossRef K. Murty, The Internal Pressurization Creep of Zr Alloys for Spent-Fuel Dry Storage Feasibility, JOM, 2000, 52(9), p 34–38CrossRef
17.
Zurück zum Zitat W. Daugherty and K. Murty, Application of Texture in Predicting Nuclear Fuel Cladding Creep, Nucl. Technol., 1988, 60(3), p 443–450 W. Daugherty and K. Murty, Application of Texture in Predicting Nuclear Fuel Cladding Creep, Nucl. Technol., 1988, 60(3), p 443–450
18.
Zurück zum Zitat R.E. Einziger, Extending Dry Storage of Spent LWR Fuel for 100 Years, Argonne National Lab, Lemont, IL, 1998 R.E. Einziger, Extending Dry Storage of Spent LWR Fuel for 100 Years, Argonne National Lab, Lemont, IL, 1998
19.
Zurück zum Zitat M. Quecedo et al., Results of Thermal Creep Test on Highly Irradiated ZIRLO, Proceedings of the International LWR Fuel Performance Meeting, Seul, Paper, 2008 M. Quecedo et al., Results of Thermal Creep Test on Highly Irradiated ZIRLO, Proceedings of the International LWR Fuel Performance Meeting, Seul, Paper, 2008
20.
Zurück zum Zitat R. Adamson, F. Garzarolli, and C. Patterson, In-Reactor Creep of Zirconium Alloys, Advance Nuclear Technology International, Skultuna, Sweden, 2009 R. Adamson, F. Garzarolli, and C. Patterson, In-Reactor Creep of Zirconium Alloys, Advance Nuclear Technology International, Skultuna, Sweden, 2009
21.
Zurück zum Zitat F. Feria and L. Herranz, Creep Assessment of Zry-4 Cladded High Burnup Fuel Under Dry Storage, Prog. Nucl. Energy, 2011, 53(4), p 395–400CrossRef F. Feria and L. Herranz, Creep Assessment of Zry-4 Cladded High Burnup Fuel Under Dry Storage, Prog. Nucl. Energy, 2011, 53(4), p 395–400CrossRef
22.
Zurück zum Zitat P. Bouffioux and N. Rupa, Impact of Hydrogen on Plasticity and Creep of Unirradiated Zircaloy-4 Cladding Tubes, ASTM Spec. Tech. Publ., 2000, 1354, p 399–424 P. Bouffioux and N. Rupa, Impact of Hydrogen on Plasticity and Creep of Unirradiated Zircaloy-4 Cladding Tubes, ASTM Spec. Tech. Publ., 2000, 1354, p 399–424
23.
Zurück zum Zitat Y.-I. Jung et al., Thermal Creep of Zircaloy-4 Tubes Containing Corrosion-Induced Hydrogen, J. Nucl. Mater., 2011, 419(1), p 213–216CrossRef Y.-I. Jung et al., Thermal Creep of Zircaloy-4 Tubes Containing Corrosion-Induced Hydrogen, J. Nucl. Mater., 2011, 419(1), p 213–216CrossRef
24.
Zurück zum Zitat R. Kishore, Effect of Hydrogen on the Creep Behavior of Zr-2.5%Nb Alloy at 723 K, J. Nucl. Mater., 2009, 385(3), p 591–594CrossRef R. Kishore, Effect of Hydrogen on the Creep Behavior of Zr-2.5%Nb Alloy at 723 K, J. Nucl. Mater., 2009, 385(3), p 591–594CrossRef
25.
Zurück zum Zitat D. Setoyama and S. Yamanaka, Indentation Creep Study of Zirconium Hydrogen Solid Solution, J. Alloy. Compd., 2004, 379(1), p 193–197CrossRef D. Setoyama and S. Yamanaka, Indentation Creep Study of Zirconium Hydrogen Solid Solution, J. Alloy. Compd., 2004, 379(1), p 193–197CrossRef
26.
Zurück zum Zitat P. Bouffioux, et al., Interim Dry Storage of PWR Spent Fuel Assemblies Development of a Long Term Creep Law to Assess the Fuel Cladding Integrity, 8th International Conference on Radiactive Waste Management and Environmental Remediation, 2001 P. Bouffioux, et al., Interim Dry Storage of PWR Spent Fuel Assemblies Development of a Long Term Creep Law to Assess the Fuel Cladding Integrity, 8th International Conference on Radiactive Waste Management and Environmental Remediation, 2001
27.
Zurück zum Zitat Anual Report of Nuclear Power Engineering Corporation, Japan, 2001 Anual Report of Nuclear Power Engineering Corporation, Japan, 2001
28.
Zurück zum Zitat A. Sarkar, K. Boopathy, J. Eapen, K. L. Murty, Effect of Hydrogen on Creep Behavior of Zirconium Alloys, LWR Fuel Performance Meeting TopFuel 2013, Charlotte, USA, 2013 A. Sarkar, K. Boopathy, J. Eapen, K. L. Murty, Effect of Hydrogen on Creep Behavior of Zirconium Alloys, LWR Fuel Performance Meeting TopFuel 2013, Charlotte, USA, 2013
29.
Zurück zum Zitat Rupa, N., et al. About the Mechanisms Governing the Hydrogen Effect on Viscoplasticity of Unirradiated Fully Annealed Zircaloy-4 Sheet. Thirteenth International Symposium on Zirconium in the Nuclear Industry, 2001 Rupa, N., et al. About the Mechanisms Governing the Hydrogen Effect on Viscoplasticity of Unirradiated Fully Annealed Zircaloy-4 Sheet. Thirteenth International Symposium on Zirconium in the Nuclear Industry, 2001
30.
Zurück zum Zitat C. Domain, R. Besson, and A. Legris, Atomic-Scale ab Initio Study of the Zr-H System: II. Interaction of H with Plane Defects and Mechanical Properties, Acta Mater., 2004, 52(6), p 1495–1502CrossRef C. Domain, R. Besson, and A. Legris, Atomic-Scale ab Initio Study of the Zr-H System: II. Interaction of H with Plane Defects and Mechanical Properties, Acta Mater., 2004, 52(6), p 1495–1502CrossRef
31.
Zurück zum Zitat V. Mallipudi, S. Valance, and J. Bertsch, Meso-Scale Analysis of the Creep Behavior of Hydrogenated Zircaloy-4, Mech. Mater., 2012, 51, p 15–28CrossRef V. Mallipudi, S. Valance, and J. Bertsch, Meso-Scale Analysis of the Creep Behavior of Hydrogenated Zircaloy-4, Mech. Mater., 2012, 51, p 15–28CrossRef
32.
Zurück zum Zitat K. Ito, K. Kamimura, Y. Tsukuda, Evaluation of Irradiation Effect on Spent Fuel Cladding Creep Properties. Proceedings of 2004 International Meeting on LWR Fuel Performance, 2004 K. Ito, K. Kamimura, Y. Tsukuda, Evaluation of Irradiation Effect on Spent Fuel Cladding Creep Properties. Proceedings of 2004 International Meeting on LWR Fuel Performance, 2004
33.
Zurück zum Zitat S. Yamanaka, M. Kuroda, and D. Setoyama, Mechanical Properties of Zirconium Hydride and Hydrogen Solid Solution, Trans. Atom. Energy Soc. Jpn., 2002, 1(4), p 323–327 S. Yamanaka, M. Kuroda, and D. Setoyama, Mechanical Properties of Zirconium Hydride and Hydrogen Solid Solution, Trans. Atom. Energy Soc. Jpn., 2002, 1(4), p 323–327
34.
Zurück zum Zitat H.K. Birnbaum and P. Sofronis, Hydrogen-Enhanced Localized Plasticity—A Mechanism for Hydrogen-Related Fracture, Mater. Sci. Eng. A, 1994, 176(1), p 191–202CrossRef H.K. Birnbaum and P. Sofronis, Hydrogen-Enhanced Localized Plasticity—A Mechanism for Hydrogen-Related Fracture, Mater. Sci. Eng. A, 1994, 176(1), p 191–202CrossRef
35.
Zurück zum Zitat I. Robertson, The Effect of Hydrogen on Dislocation Dynamics, Eng. Fract. Mech., 2001, 68(6), p 671–692CrossRef I. Robertson, The Effect of Hydrogen on Dislocation Dynamics, Eng. Fract. Mech., 2001, 68(6), p 671–692CrossRef
36.
Zurück zum Zitat J. Xu and S.-Q. Shi, Investigation of Mechanical Properties of 〈i〉ε〈/i〉-Zirconium Hydride Using Micro- and Nano-Indentation Techniques, J. Nucl. Mater., 2004, 327(2), p 165–170CrossRef J. Xu and S.-Q. Shi, Investigation of Mechanical Properties of 〈i〉ε〈/i〉-Zirconium Hydride Using Micro- and Nano-Indentation Techniques, J. Nucl. Mater., 2004, 327(2), p 165–170CrossRef
37.
Zurück zum Zitat M. Puls, S.-Q. Shi, and J. Rabier, Experimental Studies of Mechanical Properties of Solid Zirconium Hydrides, J. Nucl. Mater., 2005, 336(1), p 73–80CrossRef M. Puls, S.-Q. Shi, and J. Rabier, Experimental Studies of Mechanical Properties of Solid Zirconium Hydrides, J. Nucl. Mater., 2005, 336(1), p 73–80CrossRef
38.
Zurück zum Zitat K.B. Colas et al., Effect of Thermo-Mechanical Cycling on Zirconium Hydride Reorientation Studied In Situ with Synchrotron x-ray Diffraction, J. Nucl. Mater., 2013, 440(1–3), p 586–595CrossRef K.B. Colas et al., Effect of Thermo-Mechanical Cycling on Zirconium Hydride Reorientation Studied In Situ with Synchrotron x-ray Diffraction, J. Nucl. Mater., 2013, 440(1–3), p 586–595CrossRef
39.
Zurück zum Zitat R.S. Daum, Y.S. Chu, and A.T. Motta, Identification and Quantification of Hydride Phases in Zircaloy-4 Cladding Using Synchrotron x-ray Diffraction, J. Nucl. Mater., 2009, 392(3), p 453–463CrossRef R.S. Daum, Y.S. Chu, and A.T. Motta, Identification and Quantification of Hydride Phases in Zircaloy-4 Cladding Using Synchrotron x-ray Diffraction, J. Nucl. Mater., 2009, 392(3), p 453–463CrossRef
Metadaten
Titel
Creep Behavior of Hydrogenated Zirconium Alloys
verfasst von
A. Sarkar
K. Boopathy
J. Eapen
K. L. Murty
Publikationsdatum
01.10.2014
Verlag
Springer US
Erschienen in
Journal of Materials Engineering and Performance / Ausgabe 10/2014
Print ISSN: 1059-9495
Elektronische ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-014-1129-y

Weitere Artikel der Ausgabe 10/2014

Journal of Materials Engineering and Performance 10/2014 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.