Skip to main content
Erschienen in: Journal of Materials Science 5/2014

01.03.2014

Creep deformation behavior of Sn–Zn solder alloys

verfasst von: Triratna Shrestha, Srikant Gollapudi, Indrajit Charit, K. Linga Murty

Erschienen in: Journal of Materials Science | Ausgabe 5/2014

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Creep properties of three Sn–Zn solder alloys (Sn–9Zn, Sn–20Zn, and Sn–25Zn, wt%) were studied using the impression creep technique. Microstructural characteristics were examined using a scanning electron microscope. The alloys exhibited stress exponents of about 5.0. The activation energy for creep was calculated to be ~50–75 kJ/mol with a mean value of 66.3 kJ/mol. The likely creep mechanism was identified to be the low temperature viscous glide of dislocations.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat The European Parliament and the Council of the European Union (2003) Directive 2002/95/EC on the restriction of the use of certain hazardous substances (RoHS) in electrical and electronic equipment. J Eur Union 46(L 37):24–38 The European Parliament and the Council of the European Union (2003) Directive 2002/95/EC on the restriction of the use of certain hazardous substances (RoHS) in electrical and electronic equipment. J Eur Union 46(L 37):24–38
2.
Zurück zum Zitat Plumbridge WJ, Gagg CR, Peters S (2001) The creep of lead-free solders at elevated temperatures. J Electron Mater 30:1178–1183CrossRef Plumbridge WJ, Gagg CR, Peters S (2001) The creep of lead-free solders at elevated temperatures. J Electron Mater 30:1178–1183CrossRef
3.
Zurück zum Zitat Sidhu RS, Deng X, Chawla N (2008) Microstructure characterization and creep behavior of Pb-free Sn-rich solder alloys: part II. Creep behavior of bulk solder and solder/copper joints. Metall Mater Trans 39A:349–362CrossRef Sidhu RS, Deng X, Chawla N (2008) Microstructure characterization and creep behavior of Pb-free Sn-rich solder alloys: part II. Creep behavior of bulk solder and solder/copper joints. Metall Mater Trans 39A:349–362CrossRef
4.
Zurück zum Zitat Guo F, Choi S, Subramanian KN, Bieler TR, Lucas JP, Achari A, Paruchuri M (2003) Evaluation of creep behavior of near-eutectic Sn–Ag solders containing small amount of alloy additions. Mater Sci Eng A351:190–199CrossRef Guo F, Choi S, Subramanian KN, Bieler TR, Lucas JP, Achari A, Paruchuri M (2003) Evaluation of creep behavior of near-eutectic Sn–Ag solders containing small amount of alloy additions. Mater Sci Eng A351:190–199CrossRef
5.
Zurück zum Zitat Dutta I (2013) A constitutive model for creep of lead free solders undergoing strain-enhanced microstructural coarsening: a first report. J Electron Mater 32:201–207CrossRef Dutta I (2013) A constitutive model for creep of lead free solders undergoing strain-enhanced microstructural coarsening: a first report. J Electron Mater 32:201–207CrossRef
6.
Zurück zum Zitat Mavoori H, Chin T, Vaynman S, Moran B, Keer L, Fine M (1997) Creep, stress relaxation, and plastic deformation in Sn–Ag and Sn–Zn eutectic solders. J Electron Mater 26:783–790CrossRef Mavoori H, Chin T, Vaynman S, Moran B, Keer L, Fine M (1997) Creep, stress relaxation, and plastic deformation in Sn–Ag and Sn–Zn eutectic solders. J Electron Mater 26:783–790CrossRef
7.
Zurück zum Zitat Rani SD, Murthy GS (2004) Impression creep behavior of tin based lead free solders. Mater Sci Technol 20:403–408CrossRef Rani SD, Murthy GS (2004) Impression creep behavior of tin based lead free solders. Mater Sci Technol 20:403–408CrossRef
8.
Zurück zum Zitat Kitajima M, Shono T (2005) Development of Sn–Zn–Al lead-free solder alloys. Fujitsu Sci Tech J 41:225–235 Kitajima M, Shono T (2005) Development of Sn–Zn–Al lead-free solder alloys. Fujitsu Sci Tech J 41:225–235
9.
Zurück zum Zitat Kim YS, Kim KS, Hwang CW, Suganuma K (2003) Effect of composition and cooling rate on microstructure and tensile properties of Sn–Zn–Bi alloys. J Alloys Compd 352:237–242CrossRef Kim YS, Kim KS, Hwang CW, Suganuma K (2003) Effect of composition and cooling rate on microstructure and tensile properties of Sn–Zn–Bi alloys. J Alloys Compd 352:237–242CrossRef
10.
Zurück zum Zitat Mahmudi R, Geranmayeh AR, Noori H, Shahabi M (2008) Impression creep of hypoeutectic Sn–Zn lead-free solder alloys. Mater Sci Eng A491:110–116CrossRef Mahmudi R, Geranmayeh AR, Noori H, Shahabi M (2008) Impression creep of hypoeutectic Sn–Zn lead-free solder alloys. Mater Sci Eng A491:110–116CrossRef
11.
Zurück zum Zitat Sakr MS, Mohamed AZ, El-Daly AA, Abdel-Daiem AM, Bassyouni AH (1990) Microstructure dependence of steady state creep in Sn–Zn alloys. Egypt J Solids 13:34–41 Sakr MS, Mohamed AZ, El-Daly AA, Abdel-Daiem AM, Bassyouni AH (1990) Microstructure dependence of steady state creep in Sn–Zn alloys. Egypt J Solids 13:34–41
12.
Zurück zum Zitat Suganuma K, Kim SJ, Kim KS (2009) High temperature lead-free solders: properties and possibilities. JOM 61:64–71CrossRef Suganuma K, Kim SJ, Kim KS (2009) High temperature lead-free solders: properties and possibilities. JOM 61:64–71CrossRef
13.
Zurück zum Zitat Sastry DH, Murthy GS (1986) Impression creep behavior of metals at high temperatures. Trans Ind Inst Met 39:369–379 Sastry DH, Murthy GS (1986) Impression creep behavior of metals at high temperatures. Trans Ind Inst Met 39:369–379
14.
Zurück zum Zitat Baker H, Okamoto H (1992) ASM handbook: alloy phase diagrams, vol 3. ASM International, Materials Park Baker H, Okamoto H (1992) ASM handbook: alloy phase diagrams, vol 3. ASM International, Materials Park
16.
Zurück zum Zitat Yu EC, Li JCM (1977) Impression creep of LiF single crystals. Philos Mag 36:811–825CrossRef Yu EC, Li JCM (1977) Impression creep of LiF single crystals. Philos Mag 36:811–825CrossRef
17.
Zurück zum Zitat Hussien S, Jung YH, Murty KL (1985) An evaluation of mechanical anisotropy of Zircaloy using impression testing. Scripta Met 19:1045–1048CrossRef Hussien S, Jung YH, Murty KL (1985) An evaluation of mechanical anisotropy of Zircaloy using impression testing. Scripta Met 19:1045–1048CrossRef
18.
Zurück zum Zitat Godavarti PS, Murty KL (1987) Creep anisotropy of zinc using impression tests. J Mater Sci Lett 6(1987):456–458CrossRef Godavarti PS, Murty KL (1987) Creep anisotropy of zinc using impression tests. J Mater Sci Lett 6(1987):456–458CrossRef
19.
Zurück zum Zitat Bird JE, Mukherjee AK, Dorn JE (1969) Correlations between high temperature creep behavior and structure. In: Brandon DG, Rosen A (eds) Quantitative relation between properties and microstructure. Israel University Press, Jerusalem, pp 255–342 Bird JE, Mukherjee AK, Dorn JE (1969) Correlations between high temperature creep behavior and structure. In: Brandon DG, Rosen A (eds) Quantitative relation between properties and microstructure. Israel University Press, Jerusalem, pp 255–342
20.
Zurück zum Zitat Subrahmanyam B (1972) Elastic moduli of some eutectic alloys. Trans Jpn Inst Met 13:89–92 Subrahmanyam B (1972) Elastic moduli of some eutectic alloys. Trans Jpn Inst Met 13:89–92
21.
Zurück zum Zitat Mathew MD, Yang H, Movva S, Murty KL (2005) Creep deformation characteristics of tin and tin based electronic solder alloys. Metall Mater Trans A36:99–105CrossRef Mathew MD, Yang H, Movva S, Murty KL (2005) Creep deformation characteristics of tin and tin based electronic solder alloys. Metall Mater Trans A36:99–105CrossRef
22.
Zurück zum Zitat Charit I, Murty KL (2008) Creep behavior of Nb-modified zirconium alloys. J Nucl Mater 374:354–363CrossRef Charit I, Murty KL (2008) Creep behavior of Nb-modified zirconium alloys. J Nucl Mater 374:354–363CrossRef
23.
Zurück zum Zitat Boas W, Fensham PJ (1949) Rate of self-diffusion in tin crystals. Nature 164:1127–1128CrossRef Boas W, Fensham PJ (1949) Rate of self-diffusion in tin crystals. Nature 164:1127–1128CrossRef
24.
Zurück zum Zitat Sherby OD, Burke PM (1967) Mechanical behavior of crystalline solids at elevated temperature. Prog Mater Sci 1:325–390 Sherby OD, Burke PM (1967) Mechanical behavior of crystalline solids at elevated temperature. Prog Mater Sci 1:325–390
25.
Zurück zum Zitat Meakin JD, Klokholm E (1960) Self-diffusion in tin single crystals. Trans AIME 218:463–466 Meakin JD, Klokholm E (1960) Self-diffusion in tin single crystals. Trans AIME 218:463–466
26.
Zurück zum Zitat Devries KL, Baker GS, Gibbs P (1963) Effect of pressure on creep in tin. J Appl Phys 34:2258CrossRef Devries KL, Baker GS, Gibbs P (1963) Effect of pressure on creep in tin. J Appl Phys 34:2258CrossRef
27.
Zurück zum Zitat Wiseman CD, Sherby OD, Dorn JE (1957) Creep of single crystals and polycrystals of aluminum, lead and tin. Trans AIME 9:57–59 Wiseman CD, Sherby OD, Dorn JE (1957) Creep of single crystals and polycrystals of aluminum, lead and tin. Trans AIME 9:57–59
28.
Zurück zum Zitat Bonar LG, Craig GB (1958) Activation energy for creep in tin. Can J Phys 36:1445–1449CrossRef Bonar LG, Craig GB (1958) Activation energy for creep in tin. Can J Phys 36:1445–1449CrossRef
29.
Zurück zum Zitat Yang F, Li JCM (2007) Deformation behavior of tin and some tin alloys. J Mater Sci Mater Electron 18:191–210CrossRef Yang F, Li JCM (2007) Deformation behavior of tin and some tin alloys. J Mater Sci Mater Electron 18:191–210CrossRef
30.
Zurück zum Zitat Shrestha T, Basirat M, Charit I, Potirniche G, Rink K, Sahaym U (2012) Creep deformation mechanisms in modified 9Cr–1Mo steel. J Nucl Mater 423:110–119CrossRef Shrestha T, Basirat M, Charit I, Potirniche G, Rink K, Sahaym U (2012) Creep deformation mechanisms in modified 9Cr–1Mo steel. J Nucl Mater 423:110–119CrossRef
31.
Zurück zum Zitat Huang FH, Huntington HB (1974) Diffusion in Sb124, Cd109, Sn113 and Zn65. Phys Rev B 9:1479–1488CrossRef Huang FH, Huntington HB (1974) Diffusion in Sb124, Cd109, Sn113 and Zn65. Phys Rev B 9:1479–1488CrossRef
Metadaten
Titel
Creep deformation behavior of Sn–Zn solder alloys
verfasst von
Triratna Shrestha
Srikant Gollapudi
Indrajit Charit
K. Linga Murty
Publikationsdatum
01.03.2014
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 5/2014
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-013-7905-5

Weitere Artikel der Ausgabe 5/2014

Journal of Materials Science 5/2014 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.