Skip to main content
Erschienen in: International Journal of Machine Learning and Cybernetics 3/2024

08.09.2023 | Original Article

Cross-domain transferable discriminant dictionary based sparse representation approach for EEG emotion-level recognition

verfasst von: Tongguang Ni, Chengbing He, Yizhang Jiang, Xiaoqing Gu

Erschienen in: International Journal of Machine Learning and Cybernetics | Ausgabe 3/2024

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Emotion is usually caused by complex psychological and physiological changes triggered by external stimuli. It is considered one of the abilities to guide one's thinking and action. Emotion-level recognition realizes psychological perception and evaluation by collecting various data characteristics of individual behavior and physiological level, and reversely deriving complex physiological psychological mapping. Emotional Electroencephalogram (EEG) signals are not easy to be hidden and forged, and using them for emotion-level recognition has high application value. However, EEG data are often collected in complex environments and scenes, and there are strong time and individual differences in EEG signals. This study proposes a cross-domain transferable discriminant dictionary based sparse representation (CTDDSR) approach for EEG emotion-level recognition. CTDDSR utilizes subspace projection strategy to find a suitable projection subspace. In this subspace, CTDDSR learns the shared dictionary to construct a strong connection between the source and target domains in the framework of dictionary based sparse representation. Different from the traditional projection matrices are completely domain-specific, our projection matrix for each domain is the combination of the domain-specific component and domain-invariable component. The former component is used to retain the individual domain information. By maximizing the cross-domain reconstruction error, the latter component is used to exploit the discriminant knowledge across domains in the shared latent subspace. In addition, to obtain the discriminant dictionary in the subspace, CTDDSR introduces linear discriminant analysis (LDA) to ensure the minimum of the intra-class reconstruction error and the maximum of the inter-class reconstruction error on sparse coding coefficients within each domain. Cross-domain EEG emotion-level recognition experiments are performed on the real EEG emotion dataset and verified that CTDDSR has excellent recognition performance.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Weitere Produktempfehlungen anzeigen
Literatur
1.
Zurück zum Zitat Feller S, Castillo E, Greenberg J et al (2018) University of California Los Angeles Community Translational Science Team, emotional well-being and public health: Proposal for a model national initiative. Public Health Rep 133(2):136–141CrossRefPubMedPubMedCentral Feller S, Castillo E, Greenberg J et al (2018) University of California Los Angeles Community Translational Science Team, emotional well-being and public health: Proposal for a model national initiative. Public Health Rep 133(2):136–141CrossRefPubMedPubMedCentral
2.
Zurück zum Zitat Wu M, Teng W, Fan C et al (2023) An investigation of olfactory-enhanced video on EEG-based emotion recognition. IEEE Trans Neural Syst Rehabil Eng 31(3):1602–1613CrossRefPubMed Wu M, Teng W, Fan C et al (2023) An investigation of olfactory-enhanced video on EEG-based emotion recognition. IEEE Trans Neural Syst Rehabil Eng 31(3):1602–1613CrossRefPubMed
3.
Zurück zum Zitat Kong W, Song X, Sun J (2021) Emotion recognition based on sparse representation of phase synchronization features. Multimed Tools Appl 80:21203–21217CrossRef Kong W, Song X, Sun J (2021) Emotion recognition based on sparse representation of phase synchronization features. Multimed Tools Appl 80:21203–21217CrossRef
4.
Zurück zum Zitat Liu S, Wang Z, An Y et al (2023) EEG emotion recognition based on the attention mechanism and pre-trained convolution capsule network. Knowl-Based Syst 265(4):110372CrossRef Liu S, Wang Z, An Y et al (2023) EEG emotion recognition based on the attention mechanism and pre-trained convolution capsule network. Knowl-Based Syst 265(4):110372CrossRef
5.
Zurück zum Zitat Canamero L (2021) Embodied robot models for interdisciplinary emotion research. IEEE Trans Affect Comput 12(2):340–351CrossRef Canamero L (2021) Embodied robot models for interdisciplinary emotion research. IEEE Trans Affect Comput 12(2):340–351CrossRef
6.
Zurück zum Zitat Cekic S, Grandjean D, Renaud O (2018) Time, frequency, and time-varying Granger-causality measures in neuroscience. Stat Med 37(11):1910–1931MathSciNetCrossRefPubMed Cekic S, Grandjean D, Renaud O (2018) Time, frequency, and time-varying Granger-causality measures in neuroscience. Stat Med 37(11):1910–1931MathSciNetCrossRefPubMed
7.
Zurück zum Zitat Movahed R, Jahromi G, Shahyad S et al (2022) A major depressive disorder diagnosis approach based on EEG signals using dictionary learning and functional connectivity features. Phys Eng Sci Med 45(5):705–719CrossRefPubMed Movahed R, Jahromi G, Shahyad S et al (2022) A major depressive disorder diagnosis approach based on EEG signals using dictionary learning and functional connectivity features. Phys Eng Sci Med 45(5):705–719CrossRefPubMed
9.
Zurück zum Zitat Hwang S, Hong K, Son G et al (2020) Learning CNN features from DE features for EEG-based emotion recognition. Pattern Anal Appl 23(3):1323–1335CrossRef Hwang S, Hong K, Son G et al (2020) Learning CNN features from DE features for EEG-based emotion recognition. Pattern Anal Appl 23(3):1323–1335CrossRef
10.
Zurück zum Zitat Joshi VM, Ghongade RB (2021) EEG based emotion detection using fourth order spectral moment and deep learning. Biomed Signal Process Control 68:102755CrossRef Joshi VM, Ghongade RB (2021) EEG based emotion detection using fourth order spectral moment and deep learning. Biomed Signal Process Control 68:102755CrossRef
11.
Zurück zum Zitat Liu S, Tong J, Meng J et al (2018) Study on an effective cross-stimulus emotion recognition model using EEGs based on feature selection and support vector machine. Int J Mach Learn Cybern 9(5):721–726CrossRef Liu S, Tong J, Meng J et al (2018) Study on an effective cross-stimulus emotion recognition model using EEGs based on feature selection and support vector machine. Int J Mach Learn Cybern 9(5):721–726CrossRef
12.
Zurück zum Zitat Yang Y, Wu Q, Fu Y et al (2018) Continuous convolutional neural network with 3D input for EEG-based emotion recognition. International conference on neural information processing. Springer, Siem Reap, pp 433–443CrossRef Yang Y, Wu Q, Fu Y et al (2018) Continuous convolutional neural network with 3D input for EEG-based emotion recognition. International conference on neural information processing. Springer, Siem Reap, pp 433–443CrossRef
13.
Zurück zum Zitat Shin Y, Lee S, Ahn M et al (2015) Noise robustness analysis of sparse representation based classification method for non-stationary EEG signal classification. Biomed Signal Process Control 21(8):8–18CrossRef Shin Y, Lee S, Ahn M et al (2015) Noise robustness analysis of sparse representation based classification method for non-stationary EEG signal classification. Biomed Signal Process Control 21(8):8–18CrossRef
14.
Zurück zum Zitat Wu D, Xu Y, Lu BL (2022) Transfer learning for EEG-based brain–computer interfaces: a review of progress made since 2016. IEEE Trans Cogn Dev Syst 14(1):4–19CrossRef Wu D, Xu Y, Lu BL (2022) Transfer learning for EEG-based brain–computer interfaces: a review of progress made since 2016. IEEE Trans Cogn Dev Syst 14(1):4–19CrossRef
15.
Zurück zum Zitat Quan J, Li Y, Wang L et al (2022) EEG-based cross-subject emotion recognition using multi-source domain transfer learning. Biomed Signal Process Control 84(7):104741 Quan J, Li Y, Wang L et al (2022) EEG-based cross-subject emotion recognition using multi-source domain transfer learning. Biomed Signal Process Control 84(7):104741
16.
Zurück zum Zitat Gu X, Shen Z, Qu J, Ni T (2022) Cross-domain EEG signal classification via geometric preserving transfer discriminative dictionary learning. Multimedia Tools Appl 81(29):41733–41750CrossRef Gu X, Shen Z, Qu J, Ni T (2022) Cross-domain EEG signal classification via geometric preserving transfer discriminative dictionary learning. Multimedia Tools Appl 81(29):41733–41750CrossRef
17.
Zurück zum Zitat Chen D, Miao R, Yang W et al (2019) A feature extraction method based on differential entropy and linear discriminant analysis for emotion recognition. Sensors 19(7):1631CrossRefPubMedPubMedCentral Chen D, Miao R, Yang W et al (2019) A feature extraction method based on differential entropy and linear discriminant analysis for emotion recognition. Sensors 19(7):1631CrossRefPubMedPubMedCentral
18.
Zurück zum Zitat Gu X, Zhang C, Ni T (2021) A hierarchical discriminative sparse representation classifier for EEG signal detection. IEEE/ACM Trans Comput Biol Bioinform 18(5):1679–1687CrossRefPubMed Gu X, Zhang C, Ni T (2021) A hierarchical discriminative sparse representation classifier for EEG signal detection. IEEE/ACM Trans Comput Biol Bioinform 18(5):1679–1687CrossRefPubMed
19.
Zurück zum Zitat Jiang Z, Lin Z, Davis LS (2013) Label consistent K-SVD: Learning a discriminative dictionary for recognition. IEEE Trans Pattern Anal Mach Intell 35(11):2651–2664CrossRefPubMed Jiang Z, Lin Z, Davis LS (2013) Label consistent K-SVD: Learning a discriminative dictionary for recognition. IEEE Trans Pattern Anal Mach Intell 35(11):2651–2664CrossRefPubMed
20.
Zurück zum Zitat Wei CS, Lin YP, Wang YT et al (2018) A subject-transfer framework for obviating inter-and intra-subject variability in EEG-based drowsiness detection. Neuro Image 174:407–419PubMed Wei CS, Lin YP, Wang YT et al (2018) A subject-transfer framework for obviating inter-and intra-subject variability in EEG-based drowsiness detection. Neuro Image 174:407–419PubMed
21.
Zurück zum Zitat Sun B, Feng J, Saenko K (2016) Return of frustratingly easy domain adaptation. In: Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence, Arizona, USA, pp 2058–2065 Sun B, Feng J, Saenko K (2016) Return of frustratingly easy domain adaptation. In: Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence, Arizona, USA, pp 2058–2065
22.
23.
Zurück zum Zitat Zhang W, Wu D (2020) Manifold embedded knowledge transfer for brain-computer interfaces. IEEE Trans Neural Syst Rehabil Eng 28(5):1117–1127CrossRefPubMed Zhang W, Wu D (2020) Manifold embedded knowledge transfer for brain-computer interfaces. IEEE Trans Neural Syst Rehabil Eng 28(5):1117–1127CrossRefPubMed
24.
Zurück zum Zitat He Z, Zhuang N, Bao G et al (2022) Cross-day EEG-based emotion recognition using transfer component analysis. Electronics 11(4):651CrossRef He Z, Zhuang N, Bao G et al (2022) Cross-day EEG-based emotion recognition using transfer component analysis. Electronics 11(4):651CrossRef
25.
Zurück zum Zitat Ruan Y, Du M, Ni T (2022) Transfer discriminative dictionary pair learning approach for across-subject EEG emotion classification. Front Psychol 13(5):35619785 Ruan Y, Du M, Ni T (2022) Transfer discriminative dictionary pair learning approach for across-subject EEG emotion classification. Front Psychol 13(5):35619785
26.
Zurück zum Zitat Kolodziej M, Majkowski A, Rak R (2017) Linear discriminant analysis as EEG features reduction technique for brain-computer interfaces. Prz Elektrotechniczny 88(3A):30–35 Kolodziej M, Majkowski A, Rak R (2017) Linear discriminant analysis as EEG features reduction technique for brain-computer interfaces. Prz Elektrotechniczny 88(3A):30–35
27.
Zurück zum Zitat Duan R, Zhu J, Lu B (2013) Differential entropy feature for EEG-based emotion classification. In: Proceedings of the 6th International IEEE EMBS Conference on Neural Engineering (NER), pp 81–84 Duan R, Zhu J, Lu B (2013) Differential entropy feature for EEG-based emotion classification. In: Proceedings of the 6th International IEEE EMBS Conference on Neural Engineering (NER), pp 81–84
28.
Zurück zum Zitat Cortes C, Vapnik V (1995) Support vector networks. Mach Learn 20:273–297CrossRef Cortes C, Vapnik V (1995) Support vector networks. Mach Learn 20:273–297CrossRef
29.
Zurück zum Zitat Li Y, Wang Y, Bi C et al (2018) Revisiting transductive support vector machines with margin distribution embedding. Knowl-Based Syst 152(7):200–214CrossRef Li Y, Wang Y, Bi C et al (2018) Revisiting transductive support vector machines with margin distribution embedding. Knowl-Based Syst 152(7):200–214CrossRef
Metadaten
Titel
Cross-domain transferable discriminant dictionary based sparse representation approach for EEG emotion-level recognition
verfasst von
Tongguang Ni
Chengbing He
Yizhang Jiang
Xiaoqing Gu
Publikationsdatum
08.09.2023
Verlag
Springer Berlin Heidelberg
Erschienen in
International Journal of Machine Learning and Cybernetics / Ausgabe 3/2024
Print ISSN: 1868-8071
Elektronische ISSN: 1868-808X
DOI
https://doi.org/10.1007/s13042-023-01957-9

Weitere Artikel der Ausgabe 3/2024

International Journal of Machine Learning and Cybernetics 3/2024 Zur Ausgabe

Neuer Inhalt