Skip to main content
Erschienen in: Wireless Networks 6/2018

14.02.2017

Cross-layer selective routing for cost and delay minimization in IEEE 802.11ac wireless mesh network

verfasst von: I.-Wei Lai, Nobuo Funabiki, Shigeto Tajima, Md. Selim Al Mamun, Sho Fujita

Erschienen in: Wireless Networks | Ausgabe 6/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

A Wireless Internet-access Mesh NETwork (WIMNET) provides scalable and reliable internet access through the deployment of multiple access points (APs) and gateways (GWs). In this work, we propose a selective routing algorithm aiming at a hierarchical minimization of the operational cost and the maximal end-to-end delay. In particular, by deploying redundant APs/GWs in the network field, the WIMNET becomes robust to the link or AP/GW failure. However, these redundant APs/GWs increase the operational cost like the power consumption. By using Dijkstra algorithm and 2-opt algorithm, the proposed algorithm iteratively deactivates the deployed APs/GWs and performs the routing that reduces the maximal end-to-end delay based on the APs/GWs remaining active. The generated route meets the real-world constraints like fairness criterion. We further propose a cross-layer design to enhance the routing performance by exploiting the MAC-layer frame aggregation technique. The selective routing algorithm is then implemented in the WIMNET simulator proposed by our group. The numerical experiments demonstrate that in both indoor and open space environments, the proposed selective routing greatly reduces the operational cost, i.e., up to \(80\%\) APs/GWs can be deactivated.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Fußnoten
1
A GW can be considered as an AP with the wired connection to the Internet.
 
2
The GW can sense and track the traffic volume of each host and update this value by the on-line learning process.
 
Literatur
1.
Zurück zum Zitat Crow, B. P., Widjaja, I., Kim, J. G., & Sakai, P. T. (1997). IEEE 802.11 wireless local area networks. IEEE Communications Magazine, 35(9), 116–126.CrossRef Crow, B. P., Widjaja, I., Kim, J. G., & Sakai, P. T. (1997). IEEE 802.11 wireless local area networks. IEEE Communications Magazine, 35(9), 116–126.CrossRef
2.
Zurück zum Zitat Gast, M. S. (2005). 802.11 wireless networks—the definitive guide (2nd ed.). Sebastopol: O’Reilly. Gast, M. S. (2005). 802.11 wireless networks—the definitive guide (2nd ed.). Sebastopol: O’Reilly.
4.
Zurück zum Zitat Raniwala, A., & Chiueh, T.-C. (2005). Architecture and algorithms for an IEEE 802.11-based multi-channel wireless mesh network. In Proceedings of IEEE INFOCOM, (pp. 2223–2234). Raniwala, A., & Chiueh, T.-C. (2005). Architecture and algorithms for an IEEE 802.11-based multi-channel wireless mesh network. In Proceedings of IEEE INFOCOM, (pp. 2223–2234).
5.
Zurück zum Zitat Funabiki, N., Maruyama, W., Nakanishi, T. & Watanabe, K. (2012). An extension of routing tree algorithm considering link speed change in IEEE 802.11n protocol for wireless mesh network. In Proceedings of MENS2012, (pp. 600–605). Funabiki, N., Maruyama, W., Nakanishi, T. & Watanabe, K. (2012). An extension of routing tree algorithm considering link speed change in IEEE 802.11n protocol for wireless mesh network. In Proceedings of MENS2012, (pp. 600–605).
6.
Zurück zum Zitat Hassan, W., Funabiki, N., & Nakanishi, T. (2010). Extensions of the access point allocation algorithm for wireless mesh networks. IEICE Transactions on Communications, E93–B(6), 1555–1565.CrossRef Hassan, W., Funabiki, N., & Nakanishi, T. (2010). Extensions of the access point allocation algorithm for wireless mesh networks. IEICE Transactions on Communications, E93–B(6), 1555–1565.CrossRef
7.
Zurück zum Zitat Zhang, Y., Luo, J., & Hu, H. (Eds.). (2007). Wireless mesh networking: Architectures, protocols and standards. New York: Auerbach. Zhang, Y., Luo, J., & Hu, H. (Eds.). (2007). Wireless mesh networking: Architectures, protocols and standards. New York: Auerbach.
8.
Zurück zum Zitat Funabiki, N., Shimitzu, J., Nakanishi, T., & Watanabe, K. (2011). A proposal of an active access-point selection algorithm in wireless mesh networks. In Proceedings of international conference on network-based information systems (NBiS 2011), (pp. 112-117). Funabiki, N., Shimitzu, J., Nakanishi, T., & Watanabe, K. (2011). A proposal of an active access-point selection algorithm in wireless mesh networks. In Proceedings of international conference on network-based information systems (NBiS 2011), (pp. 112-117).
9.
Zurück zum Zitat Bergamo, P., Giovanardi, A., Travasoni, A., Maniezzo, D., Mazzini, G., & Zorzi, M. (2004). Distributed power control for energy efficient routing in ad hoc networks. Wireless Networks, 10(1), 29–42.CrossRef Bergamo, P., Giovanardi, A., Travasoni, A., Maniezzo, D., Mazzini, G., & Zorzi, M. (2004). Distributed power control for energy efficient routing in ad hoc networks. Wireless Networks, 10(1), 29–42.CrossRef
10.
Zurück zum Zitat Mohsenian-Rad, A. H., & Wong, V. W. S. (2007). Joint logical topology design, interface assignment, channel allocation, and routing for multi-channel wireless mesh networks. IEEE Transactions on Wireless Communications, 6(12), 4432–4440.CrossRef Mohsenian-Rad, A. H., & Wong, V. W. S. (2007). Joint logical topology design, interface assignment, channel allocation, and routing for multi-channel wireless mesh networks. IEEE Transactions on Wireless Communications, 6(12), 4432–4440.CrossRef
11.
Zurück zum Zitat Sasikala, T., Bhagyaveni, M. A., Senthil, K., & Jawahar, V. (2016). Cross layered adaptive rate optimised error control coding for WSN. Wireless Networks, 22(6), 2071–2079.CrossRef Sasikala, T., Bhagyaveni, M. A., Senthil, K., & Jawahar, V. (2016). Cross layered adaptive rate optimised error control coding for WSN. Wireless Networks, 22(6), 2071–2079.CrossRef
12.
Zurück zum Zitat Akyildiz, I. F., & Wang, X. (2008). Cross-layer design in wireless mesh networks. IEEE Transactions on Vehicular Technology, 57(2), 1061–1076.CrossRef Akyildiz, I. F., & Wang, X. (2008). Cross-layer design in wireless mesh networks. IEEE Transactions on Vehicular Technology, 57(2), 1061–1076.CrossRef
13.
Zurück zum Zitat Li, K., & Wang, X. (2008). Cross-layer design of wireless mesh networks with network coding. IEEE Transactions on Mobile Computing, 7(11), 1363–1373.CrossRef Li, K., & Wang, X. (2008). Cross-layer design of wireless mesh networks with network coding. IEEE Transactions on Mobile Computing, 7(11), 1363–1373.CrossRef
14.
Zurück zum Zitat Benyamina, D., Hafid, A., & Gendreau, M. (2012). Wireless mesh networks design—A survey. IEEE Communications Surveys and Tutorials, 14(2), 299–310.CrossRef Benyamina, D., Hafid, A., & Gendreau, M. (2012). Wireless mesh networks design—A survey. IEEE Communications Surveys and Tutorials, 14(2), 299–310.CrossRef
15.
Zurück zum Zitat Karkazis, P., Trakadas, P., Leligou, H. C., Sarakis, L., Papaefstathiou, I., & Zahariadis, T. (2013). Evaluating routing metric composition approaches for QoS differentiation in low power and lossy networks. Wireless Networks, 19(6), 1269–1284.CrossRef Karkazis, P., Trakadas, P., Leligou, H. C., Sarakis, L., Papaefstathiou, I., & Zahariadis, T. (2013). Evaluating routing metric composition approaches for QoS differentiation in low power and lossy networks. Wireless Networks, 19(6), 1269–1284.CrossRef
16.
17.
Zurück zum Zitat Wu, Y., Zhang, Z., Wu, C., Li, Z., & Lau, F. (2013). CloudMoV: Cloud-based mobile social TV. IEEE Transactions on Multimedia, 15(4), 821–832.CrossRef Wu, Y., Zhang, Z., Wu, C., Li, Z., & Lau, F. (2013). CloudMoV: Cloud-based mobile social TV. IEEE Transactions on Multimedia, 15(4), 821–832.CrossRef
18.
Zurück zum Zitat Miettinen, K. (1999). Nonlinear multiobjective optimization. Norwell: Kluwer.MATH Miettinen, K. (1999). Nonlinear multiobjective optimization. Norwell: Kluwer.MATH
20.
Zurück zum Zitat Chiueh, T.-D., Tsai, P.-Y., & Lai, I.-W. (2012). Baseband receiver design for wireless MIMO-OFDM communications (2nd ed.). New York: Wiley-IEEE Press.CrossRef Chiueh, T.-D., Tsai, P.-Y., & Lai, I.-W. (2012). Baseband receiver design for wireless MIMO-OFDM communications (2nd ed.). New York: Wiley-IEEE Press.CrossRef
21.
Zurück zum Zitat Chew, C. C., Funabiki, N., Maruyama, W., & Fujita, S. (2014). An extended active access-point selection algorithm for link speed changes in wireless mesh networks. International Journal of Space-Based and Situated Computing, 4(3–4), 184–193.CrossRef Chew, C. C., Funabiki, N., Maruyama, W., & Fujita, S. (2014). An extended active access-point selection algorithm for link speed changes in wireless mesh networks. International Journal of Space-Based and Situated Computing, 4(3–4), 184–193.CrossRef
23.
Zurück zum Zitat Asai, Y., et al. (2014). Overview of very high throughput wireless LAN standard IEEE 802.11ac and experimental evaluation of multiuser-MIMO transmission. IEICE Transactions on Communications, J97–B(1), 1–18. Asai, Y., et al. (2014). Overview of very high throughput wireless LAN standard IEEE 802.11ac and experimental evaluation of multiuser-MIMO transmission. IEICE Transactions on Communications, J97–B(1), 1–18.
24.
Zurück zum Zitat Takebayashi, T. (2012). Throughput measurements of IEEE 802.11n wireless LAN and application to network design. Masters thesis, Graduate School of Natural Science and Technology, Okayama University, Japan. Takebayashi, T. (2012). Throughput measurements of IEEE 802.11n wireless LAN and application to network design. Masters thesis, Graduate School of Natural Science and Technology, Okayama University, Japan.
25.
Zurück zum Zitat Zheng, Z., & Wang, J. (2009). A study of network throughput gain in optical-wireless (FiWi) networks subject to peer-to-peer communications. In International conference on communications, (pp. 1–6). Zheng, Z., & Wang, J. (2009). A study of network throughput gain in optical-wireless (FiWi) networks subject to peer-to-peer communications. In International conference on communications, (pp. 1–6).
26.
Zurück zum Zitat Aurzada, F., Lvesque, M., Maier, M., & Reisslein, M. (2014). FiWi access networks based on next-generation PON and gigabit-class WLAN technologies: a capacity and delay analysis. IEEE/ACM Transactions on Networking (ToN), 22(4), 1176–1189.CrossRef Aurzada, F., Lvesque, M., Maier, M., & Reisslein, M. (2014). FiWi access networks based on next-generation PON and gigabit-class WLAN technologies: a capacity and delay analysis. IEEE/ACM Transactions on Networking (ToN), 22(4), 1176–1189.CrossRef
Metadaten
Titel
Cross-layer selective routing for cost and delay minimization in IEEE 802.11ac wireless mesh network
verfasst von
I.-Wei Lai
Nobuo Funabiki
Shigeto Tajima
Md. Selim Al Mamun
Sho Fujita
Publikationsdatum
14.02.2017
Verlag
Springer US
Erschienen in
Wireless Networks / Ausgabe 6/2018
Print ISSN: 1022-0038
Elektronische ISSN: 1572-8196
DOI
https://doi.org/10.1007/s11276-017-1462-9

Weitere Artikel der Ausgabe 6/2018

Wireless Networks 6/2018 Zur Ausgabe

Neuer Inhalt