Skip to main content

2022 | OriginalPaper | Buchkapitel

3. CSS on Bipartite Networks

verfasst von : Yixiang Fang, Kai Wang, Xuemin Lin, Wenjie Zhang

Erschienen in: Cohesive Subgraph Search Over Large Heterogeneous Information Networks

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In many real-world applications, relationships between two different types of entities (e.g., user-item people-location and author-paper) are naturally modeled as bipartite networks. When analyzing bipartite networks, CSMs and CSS techniques play an important role in many aspects including network measurement, dense region discovering, and network reinforcement. To meet the high demands in the era of big data, novel CSMs and CSS solutions over bipartite networks have been proposed recently. In this chapter, we extensively review existing studies of CSS over bipartite networks in the literature. Specifically, we discuss the core-, truss-, clique-, connectivity-, and density-based models and the solutions to search subgraphs following these models over bipartite networks.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Abello, J., Resende, M. G., & Sudarsky, S. (2002). Massive quasi-clique detection. In Latin American symposium on theoretical informatics (pp. 598–612). Springer. Abello, J., Resende, M. G., & Sudarsky, S. (2002). Massive quasi-clique detection. In Latin American symposium on theoretical informatics (pp. 598–612). Springer.
2.
Zurück zum Zitat Abidi, A., Chen, L., Zhou, R., & Liu, C. (2021). Searching personalized k-wing in large and dynamic bipartite graphs. arXiv preprint arXiv:2101.00810. Abidi, A., Chen, L., Zhou, R., & Liu, C. (2021). Searching personalized k-wing in large and dynamic bipartite graphs. arXiv preprint arXiv:2101.00810.
3.
Zurück zum Zitat Abidi, A., Zhou, R., Chen, L., & Liu, C. (2020). Pivot-based maximal biclique enumeration. In IJCAI (pp. 3558–3564). Abidi, A., Zhou, R., Chen, L., & Liu, C. (2020). Pivot-based maximal biclique enumeration. In IJCAI (pp. 3558–3564).
4.
Zurück zum Zitat Acuña, V., Ferreira, C. E., Freire, A. S., & Moreno, E. (2014). Solving the maximum edge biclique packing problem on unbalanced bipartite graphs. Discrete Applied Mathematics, 164, 2–12.MathSciNetCrossRef Acuña, V., Ferreira, C. E., Freire, A. S., & Moreno, E. (2014). Solving the maximum edge biclique packing problem on unbalanced bipartite graphs. Discrete Applied Mathematics, 164, 2–12.MathSciNetCrossRef
5.
Zurück zum Zitat Ahmed, A., Batagelj, V., Fu, X., Hong, S.-H., Merrick, D., & Mrvar, A. (2007). Visualisation and analysis of the internet movie database. In 2007 6th International Asia-Pacific Symposium on Visualization (pp. 17–24). IEEE. Ahmed, A., Batagelj, V., Fu, X., Hong, S.-H., Merrick, D., & Mrvar, A. (2007). Visualisation and analysis of the internet movie database. In 2007 6th International Asia-Pacific Symposium on Visualization (pp. 17–24). IEEE.
6.
Zurück zum Zitat Ahuja, R. K., Orlin, J. B., Stein, C., & Tarjan, R. E. (1994). Improved algorithms for bipartite network flow. SIAM Journal on Computing, 23(5), 906–933.MathSciNetCrossRef Ahuja, R. K., Orlin, J. B., Stein, C., & Tarjan, R. E. (1994). Improved algorithms for bipartite network flow. SIAM Journal on Computing, 23(5), 906–933.MathSciNetCrossRef
8.
Zurück zum Zitat Al-Yamani, A. A., Ramsundar, S., & Pradhan, D. K. (2007). A defect tolerance scheme for nanotechnology circuits. IEEE Transactions on Circuits and Systems I: Regular Papers, 54(11), 2402–2409.MathSciNetCrossRef Al-Yamani, A. A., Ramsundar, S., & Pradhan, D. K. (2007). A defect tolerance scheme for nanotechnology circuits. IEEE Transactions on Circuits and Systems I: Regular Papers, 54(11), 2402–2409.MathSciNetCrossRef
9.
Zurück zum Zitat Andersen, R. (2010). A local algorithm for finding dense subgraphs. ACM Transactions on Algorithms, 6(4), 1–12.MathSciNetCrossRef Andersen, R. (2010). A local algorithm for finding dense subgraphs. ACM Transactions on Algorithms, 6(4), 1–12.MathSciNetCrossRef
11.
Zurück zum Zitat Ban, Y., & Duan, Y. (2018). On finding dense subgraphs in bipartite graphs: Linear algorithms. arXiv preprint arXiv:1810.06809. Ban, Y., & Duan, Y. (2018). On finding dense subgraphs in bipartite graphs: Linear algorithms. arXiv preprint arXiv:1810.06809.
15.
Zurück zum Zitat Batagelj, V., & Zaveršnik, M. (2011). Fast algorithms for determining (generalized) core groups in social networks. Advances in Data Analysis and Classification, 5(2), 129–145.MathSciNetCrossRef Batagelj, V., & Zaveršnik, M. (2011). Fast algorithms for determining (generalized) core groups in social networks. Advances in Data Analysis and Classification, 5(2), 129–145.MathSciNetCrossRef
23.
Zurück zum Zitat Cerinšek, M., & Batagelj, V. (2015). Generalized two-mode cores. Social Networks, 42, 80–87.CrossRef Cerinšek, M., & Batagelj, V. (2015). Generalized two-mode cores. Social Networks, 42, 80–87.CrossRef
29.
Zurück zum Zitat Chen, C., Zhu, Q., Wu, Y., Sun, R., Wang, X., & Liu, X. (2021). Efficient critical relationships identification in bipartite networks. In World Wide Web (pp. 1–21). Chen, C., Zhu, Q., Wu, Y., Sun, R., Wang, X., & Liu, X. (2021). Efficient critical relationships identification in bipartite networks. In World Wide Web (pp. 1–21).
30.
Zurück zum Zitat Chen, H., & Liu, T. (2017). Maximum edge bicliques in tree convex bipartite graphs. In International Workshop on Frontiers in Algorithmics (pp. 47–55). Springer. Chen, H., & Liu, T. (2017). Maximum edge bicliques in tree convex bipartite graphs. In International Workshop on Frontiers in Algorithmics (pp. 47–55). Springer.
33.
Zurück zum Zitat Chen, L., Liu, C., Zhou, R., Xu, J., & Li, J. (2021). Efficient exact algorithms for maximum balanced biclique search in bipartite graphs (pp. 248–260). Chen, L., Liu, C., Zhou, R., Xu, J., & Li, J. (2021). Efficient exact algorithms for maximum balanced biclique search in bipartite graphs (pp. 248–260).
36.
Zurück zum Zitat Chen, X., Wang, K., Lin, X., Zhang, W., Qin, L., & Zhang, Y. (2021). Efficiently answering reachability and path queries on temporal bipartite graphs. Proceedings of the VLDB Endowment, 14(10), 1845–1858.CrossRef Chen, X., Wang, K., Lin, X., Zhang, W., Qin, L., & Zhang, Y. (2021). Efficiently answering reachability and path queries on temporal bipartite graphs. Proceedings of the VLDB Endowment, 14(10), 1845–1858.CrossRef
44.
Zurück zum Zitat Das, A., & Tirthapura, S. (2018). Incremental maintenance of maximal bicliques in a dynamic bipartite graph. IEEE Transactions on Multi-Scale Computing Systems, 4(3), 231–242.CrossRef Das, A., & Tirthapura, S. (2018). Incremental maintenance of maximal bicliques in a dynamic bipartite graph. IEEE Transactions on Multi-Scale Computing Systems, 4(3), 231–242.CrossRef
45.
Zurück zum Zitat Das, A., & Tirthapura, S. (2019). Shared-memory parallel maximal biclique enumeration. In HiPC (pp. 34–43). Das, A., & Tirthapura, S. (2019). Shared-memory parallel maximal biclique enumeration. In HiPC (pp. 34–43).
47.
Zurück zum Zitat Dawande, M., Keskinocak, P., Swaminathan, J. M., & Tayur, S. (2001). On bipartite and multipartite clique problems. Journal of Algorithms, 41(2), 388–403.MathSciNetCrossRef Dawande, M., Keskinocak, P., Swaminathan, J. M., & Tayur, S. (2001). On bipartite and multipartite clique problems. Journal of Algorithms, 41(2), 388–403.MathSciNetCrossRef
48.
Zurück zum Zitat Ding, D., Li, H., Huang, Z., & Mamoulis, N. (2017). Efficient fault-tolerant group recommendation using alpha-beta-core. In CIKM (pp. 2047–2050). Ding, D., Li, H., Huang, Z., & Mamoulis, N. (2017). Efficient fault-tolerant group recommendation using alpha-beta-core. In CIKM (pp. 2047–2050).
52.
Zurück zum Zitat Eppstein, D. (1994). Arboricity and bipartite subgraph listing algorithms. Information Processing Letters, 51(4), 207–211.MathSciNetCrossRef Eppstein, D. (1994). Arboricity and bipartite subgraph listing algorithms. Information Processing Letters, 51(4), 207–211.MathSciNetCrossRef
68.
Zurück zum Zitat Giatsidis, C., Thilikos, D. M., & Vazirgiannis, M. (2011). Evaluating cooperation in communities with the k-core structure. In ASONAM (pp. 87–93). IEEE. Giatsidis, C., Thilikos, D. M., & Vazirgiannis, M. (2011). Evaluating cooperation in communities with the k-core structure. In ASONAM (pp. 87–93). IEEE.
72.
Zurück zum Zitat Glover, F. (1997). Tabu search and adaptive memory programmin—advances, applications and challenges. In Interfaces in computer science and operations research (pp. 1–75). Springer. Glover, F. (1997). Tabu search and adaptive memory programmin—advances, applications and challenges. In Interfaces in computer science and operations research (pp. 1–75). Springer.
77.
Zurück zum Zitat Hao, Y., Zhang, M., Wang, X., & Chen, C. (2020). Cohesive subgraph detection in large bipartite networks. In International Conference on Scientific and Statistical Database Management (pp. 1–4). Hao, Y., Zhang, M., Wang, X., & Chen, C. (2020). Cohesive subgraph detection in large bipartite networks. In International Conference on Scientific and Statistical Database Management (pp. 1–4).
78.
Zurück zum Zitat Hartmanis, J. (1982). Computers and intractability: A guide to the theory of np-completeness (Michael R. Garey and David S. Johnson). Siam Review, 24(1), 90. Hartmanis, J. (1982). Computers and intractability: A guide to the theory of np-completeness (Michael R. Garey and David S. Johnson). Siam Review, 24(1), 90.
79.
Zurück zum Zitat He, Y., Wang, K., Zhang, W., Lin, X., & Zhang, Y. (2021). Exploring cohesive subgraphs with vertex engagement and tie strength in bipartite graphs. Information Sciences, 572, 277–296.MathSciNetCrossRef He, Y., Wang, K., Zhang, W., Lin, X., & Zhang, Y. (2021). Exploring cohesive subgraphs with vertex engagement and tie strength in bipartite graphs. Information Sciences, 572, 277–296.MathSciNetCrossRef
89.
Zurück zum Zitat Ignatov, D. I., Ivanova, P., & Zamaletdinova, A. (2018). Mixed integer programming for searching maximum quasi-bicliques. In International Conference on Network Analysis (pp. 19–35). Springer. Ignatov, D. I., Ivanova, P., & Zamaletdinova, A. (2018). Mixed integer programming for searching maximum quasi-bicliques. In International Conference on Network Analysis (pp. 19–35). Springer.
94.
Zurück zum Zitat Kannan, R., & Vinay, V. (1999). Analyzing the structure of large graphs. Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn. Kannan, R., & Vinay, V. (1999). Analyzing the structure of large graphs. Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn.
97.
Zurück zum Zitat Kumar, R., Tomkins, A., & Vee, E. (2008). Connectivity structure of bipartite graphs via the knc-plot. In WSDM (pp. 129–138). Kumar, R., Tomkins, A., & Vee, E. (2008). Connectivity structure of bipartite graphs via the knc-plot. In WSDM (pp. 129–138).
98.
Zurück zum Zitat Lakhotia, K., Kannan, R., Prasanna, V., & De Rose, C. A. (2021). Receipt: Refine coarse-grained independent tasks for parallel tip decomposition of bipartite graphs. PVLDB, 14(3), 404–417. Lakhotia, K., Kannan, R., Prasanna, V., & De Rose, C. A. (2021). Receipt: Refine coarse-grained independent tasks for parallel tip decomposition of bipartite graphs. PVLDB, 14(3), 404–417.
100.
Zurück zum Zitat Ley, M. (2002). The DBLP computer science bibliography: Evolution, research issues, perspectives. In String Processing and Information Retrieval, 9th International Symposium, SPIRE 2002, Lisbon, Portugal, September 11–13, 2002, Proceedings (pp. 1–10). Ley, M. (2002). The DBLP computer science bibliography: Evolution, research issues, perspectives. In String Processing and Information Retrieval, 9th International Symposium, SPIRE 2002, Lisbon, Portugal, September 11–13, 2002, Proceedings (pp. 1–10).
102.
Zurück zum Zitat Li, J., Liu, G., Li, H., & Wong, L. (2007). Maximal biclique subgraphs and closed pattern pairs of the adjacency matrix: A one-to-one correspondence and mining algorithms. TKDE, 19(12), 1625–1637. Li, J., Liu, G., Li, H., & Wong, L. (2007). Maximal biclique subgraphs and closed pattern pairs of the adjacency matrix: A one-to-one correspondence and mining algorithms. TKDE, 19(12), 1625–1637.
103.
Zurück zum Zitat Li, M., Hao, J.-K., & Wu, Q. (2020). General swap-based multiple neighborhood adaptive search for the maximum balanced biclique problem. Computers & Operations Research, 119, 104922.MathSciNetCrossRef Li, M., Hao, J.-K., & Wu, Q. (2020). General swap-based multiple neighborhood adaptive search for the maximum balanced biclique problem. Computers & Operations Research, 119, 104922.MathSciNetCrossRef
109.
Zurück zum Zitat Li, Y., Kuboyama, T., & Sakamoto, H. (2013). Truss decomposition for extracting communities in bipartite graph. In Third International Conference on Advances in Information Mining and Management (pp. 76–80). Li, Y., Kuboyama, T., & Sakamoto, H. (2013). Truss decomposition for extracting communities in bipartite graph. In Third International Conference on Advances in Information Mining and Management (pp. 76–80).
111.
Zurück zum Zitat Liu, B., Yuan, L., Lin, X., Qin, L., Zhang, W., & Zhou, J. (2019). Efficient (α, β)-core computation: An index-based approach. In WWW (pp. 1130–1141). Liu, B., Yuan, L., Lin, X., Qin, L., Zhang, W., & Zhou, J. (2019). Efficient (α, β)-core computation: An index-based approach. In WWW (pp. 1130–1141).
112.
Zurück zum Zitat Liu, B., Yuan, L., Lin, X., Qin, L., Zhang, W., & Zhou, J. (2020). Efficient (α, β)-core computation in bipartite graphs. The VLDB Journal, 29(5), 1075–1099.CrossRef Liu, B., Yuan, L., Lin, X., Qin, L., Zhang, W., & Zhou, J. (2020). Efficient (α, β)-core computation in bipartite graphs. The VLDB Journal, 29(5), 1075–1099.CrossRef
114.
Zurück zum Zitat Liu, G., Sim, K., & Li, J. (2006). Efficient mining of large maximal bicliques. In International Conference on Data Warehousing and Knowledge Discovery (pp. 437–448). Springer. Liu, G., Sim, K., & Li, J. (2006). Efficient mining of large maximal bicliques. In International Conference on Data Warehousing and Knowledge Discovery (pp. 437–448). Springer.
118.
Zurück zum Zitat Liu, X., Li, J., & Wang, L. (2008). Modeling protein interacting groups by quasi-bicliques: Complexity, algorithm, and application. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 7(2), 354–364. Liu, X., Li, J., & Wang, L. (2008). Modeling protein interacting groups by quasi-bicliques: Complexity, algorithm, and application. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 7(2), 354–364.
123.
Zurück zum Zitat Lyu, B., Qin, L., Lin, X., Zhang, Y., Qian, Z., & Zhou, J. (2020). Maximum biclique search at billion scale. PVLDB, 13(9), 1359–1372. Lyu, B., Qin, L., Lin, X., Zhang, Y., Qian, Z., & Zhou, J. (2020). Maximum biclique search at billion scale. PVLDB, 13(9), 1359–1372.
124.
Zurück zum Zitat Ma, C., Fang, Y., Cheng, R., Lakshmanan, L. V., Zhang, W., & Lin, X. (2020). Efficient algorithms for densest subgraph discovery on large directed graphs. In SIGMOD (pp. 1051–1066). ACM. Ma, C., Fang, Y., Cheng, R., Lakshmanan, L. V., Zhang, W., & Lin, X. (2020). Efficient algorithms for densest subgraph discovery on large directed graphs. In SIGMOD (pp. 1051–1066). ACM.
127.
Zurück zum Zitat Ma, Z., Liu, Y., Hu, Y., Yang, J., Liu, C., & Dai, H. (2021). Efficient maintenance for maximal bicliques in bipartite graph streams. In World Wide Web (pp. 1–21). Ma, Z., Liu, Y., Hu, Y., Yang, J., Liu, C., & Dai, H. (2021). Efficient maintenance for maximal bicliques in bipartite graph streams. In World Wide Web (pp. 1–21).
128.
Zurück zum Zitat McCreesh, C., & Prosser, P. (2014). An exact branch and bound algorithm with symmetry breaking for the maximum balanced induced biclique problem. In International Conference on AI and OR Techniques in Constraint Programming for Combinatorial Optimization Problems (pp. 226–234). Springer. McCreesh, C., & Prosser, P. (2014). An exact branch and bound algorithm with symmetry breaking for the maximum balanced induced biclique problem. In International Conference on AI and OR Techniques in Constraint Programming for Combinatorial Optimization Problems (pp. 226–234). Springer.
130.
Zurück zum Zitat Mishra, N., Ron, D., & Swaminathan, R. (2004). A new conceptual clustering framework. Machine Learning, 56(1–3), 115–151.CrossRef Mishra, N., Ron, D., & Swaminathan, R. (2004). A new conceptual clustering framework. Machine Learning, 56(1–3), 115–151.CrossRef
131.
Zurück zum Zitat Mitzenmacher, M., Pachocki, J., Peng, R., Tsourakakis, C., & Xu, S. C. (2015). Scalable large near-clique detection in large-scale networks via sampling. In SIGKDD (pp. 815–824). ACM. Mitzenmacher, M., Pachocki, J., Peng, R., Tsourakakis, C., & Xu, S. C. (2015). Scalable large near-clique detection in large-scale networks via sampling. In SIGKDD (pp. 815–824). ACM.
133.
Zurück zum Zitat Mukherjee, A. P., & Tirthapura, S. (2016). Enumerating maximal bicliques from a large graph using mapreduce. IEEE Transactions on Services Computing, 10(5), 771–784.CrossRef Mukherjee, A. P., & Tirthapura, S. (2016). Enumerating maximal bicliques from a large graph using mapreduce. IEEE Transactions on Services Computing, 10(5), 771–784.CrossRef
134.
Zurück zum Zitat Nussbaum, D., Pu, S., Sack, J.-R., Uno, T., & Zarrabi-Zadeh, H. (2012). Finding maximum edge bicliques in convex bipartite graphs. Algorithmica, 64(2), 311–325.MathSciNetCrossRef Nussbaum, D., Pu, S., Sack, J.-R., Uno, T., & Zarrabi-Zadeh, H. (2012). Finding maximum edge bicliques in convex bipartite graphs. Algorithmica, 64(2), 311–325.MathSciNetCrossRef
135.
Zurück zum Zitat Pandey, A., Sharma, G., & Jain, N. (2020). Maximum weighted edge biclique problem on bipartite graphs. In Conference on Algorithms and Discrete Applied Mathematics (pp. 116–128). Springer. Pandey, A., Sharma, G., & Jain, N. (2020). Maximum weighted edge biclique problem on bipartite graphs. In Conference on Algorithms and Discrete Applied Mathematics (pp. 116–128). Springer.
136.
Zurück zum Zitat Pavlopoulos, G. A., Kontou, P. I., Pavlopoulou, A., Bouyioukos, C., Markou, E., & Bagos, P. G. (2018). Bipartite graphs in systems biology and medicine: A survey of methods and applications. GigaScience, 7(4), giy014. Pavlopoulos, G. A., Kontou, P. I., Pavlopoulou, A., Bouyioukos, C., Markou, E., & Bagos, P. G. (2018). Bipartite graphs in systems biology and medicine: A survey of methods and applications. GigaScience, 7(4), giy014.
137.
Zurück zum Zitat Peeters, R. (2003). The maximum edge biclique problem is np-complete. Discrete Applied Mathematics, 131(3), 651–654.MathSciNetCrossRef Peeters, R. (2003). The maximum edge biclique problem is np-complete. Discrete Applied Mathematics, 131(3), 651–654.MathSciNetCrossRef
143.
Zurück zum Zitat Sarıyüce, A. E., & Pinar, A. (2018). Peeling bipartite networks for dense subgraph discovery. In WSDM (pp. 504–512). Sarıyüce, A. E., & Pinar, A. (2018). Peeling bipartite networks for dense subgraph discovery. In WSDM (pp. 504–512).
146.
Zurück zum Zitat Shaham, E., Yu, H., & Li, X.-L. (2016). On finding the maximum edge biclique in a bipartite graph: A subspace clustering approach. In Proceedings of the 2016 SIAM International Conference on Data Mining (pp. 315–323). SIAM. Shaham, E., Yu, H., & Li, X.-L. (2016). On finding the maximum edge biclique in a bipartite graph: A subspace clustering approach. In Proceedings of the 2016 SIAM International Conference on Data Mining (pp. 315–323). SIAM.
149.
Zurück zum Zitat Shi, J., & Shun, J. (2020). Parallel algorithms for butterfly computations (pp. 16–30). Shi, J., & Shun, J. (2020). Parallel algorithms for butterfly computations (pp. 16–30).
150.
Zurück zum Zitat Sim, K., Li, J., Gopalkrishnan, V., & Liu, G. (2009). Mining maximal quasi-bicliques: Novel algorithm and applications in the stock market and protein networks. Statistical Analysis and Data Mining: The ASA Data Science Journal, 2(4), 255–273.MathSciNetCrossRef Sim, K., Li, J., Gopalkrishnan, V., & Liu, G. (2009). Mining maximal quasi-bicliques: Novel algorithm and applications in the stock market and protein networks. Statistical Analysis and Data Mining: The ASA Data Science Journal, 2(4), 255–273.MathSciNetCrossRef
151.
Zurück zum Zitat Sözdinler, M., & Özturan, C. (2018). Finding maximum edge biclique in bipartite networks by integer programming. In 2018 IEEE International Conference on Computational Science and Engineering (CSE) (pp. 132–137). IEEE. Sözdinler, M., & Özturan, C. (2018). Finding maximum edge biclique in bipartite networks by integer programming. In 2018 IEEE International Conference on Computational Science and Engineering (CSE) (pp. 132–137). IEEE.
158.
Zurück zum Zitat Tahoori, M. B. (2006). Application-independent defect tolerance of reconfigurable nanoarchitectures. ACM Journal on Emerging Technologies in Computing Systems (JETC), 2(3), 197–218.CrossRef Tahoori, M. B. (2006). Application-independent defect tolerance of reconfigurable nanoarchitectures. ACM Journal on Emerging Technologies in Computing Systems (JETC), 2(3), 197–218.CrossRef
159.
Zurück zum Zitat Tan, J. (2008). Inapproximability of maximum weighted edge biclique and its applications. In International Conference on Theory and Applications of Models of Computation (pp. 282–293). Springer. Tan, J. (2008). Inapproximability of maximum weighted edge biclique and its applications. In International Conference on Theory and Applications of Models of Computation (pp. 282–293). Springer.
165.
Zurück zum Zitat Wang, J., de Vries, A. P., & Reinders, M. J. T. (2006). Unifying user-based and item-based collaborative filtering approaches by similarity fusion. In SIGIR 2006: Proceedings of the 29th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, Seattle, Washington, USA, August 6–11, 2006 (pp. 501–508). Wang, J., de Vries, A. P., & Reinders, M. J. T. (2006). Unifying user-based and item-based collaborative filtering approaches by similarity fusion. In SIGIR 2006: Proceedings of the 29th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, Seattle, Washington, USA, August 6–11, 2006 (pp. 501–508).
167.
Zurück zum Zitat Wang, K., Lin, X., Qin, L., Zhang, W., & Ying, Z. (2021). Towards efficient solutions of bitruss decomposition for large-scale bipartite graphs. The VLDB Journal 1–24. Wang, K., Lin, X., Qin, L., Zhang, W., & Ying, Z. (2021). Towards efficient solutions of bitruss decomposition for large-scale bipartite graphs. The VLDB Journal 1–24.
168.
Zurück zum Zitat Wang, K., Lin, X., Qin, L., Zhang, W., & Zhang, Y. (2019). Vertex priority based butterfly counting for large-scale bipartite networks. PVLDB, 12(10), 1139–1152. Wang, K., Lin, X., Qin, L., Zhang, W., & Zhang, Y. (2019). Vertex priority based butterfly counting for large-scale bipartite networks. PVLDB, 12(10), 1139–1152.
169.
Zurück zum Zitat Wang, K., Lin, X., Qin, L., Zhang, W., & Zhang, Y. (2020). Efficient bitruss decomposition for large-scale bipartite graphs. In ICDE (pp. 661–672). IEEE. Wang, K., Lin, X., Qin, L., Zhang, W., & Zhang, Y. (2020). Efficient bitruss decomposition for large-scale bipartite graphs. In ICDE (pp. 661–672). IEEE.
170.
Zurück zum Zitat Wang, K., Zhang, W., Lin, X., Zhang, Y., Qin, L., & Zhang, Y. (2021). Efficient and effective community search on large-scale bipartite graphs. ICDE. Wang, K., Zhang, W., Lin, X., Zhang, Y., Qin, L., & Zhang, Y. (2021). Efficient and effective community search on large-scale bipartite graphs. ICDE.
171.
Zurück zum Zitat Wang, K., Zhang, W., Zhang, Y., Qin, L., & Zhang, Y. (2021). Discovering significant communities on bipartite graphs: An index-based approach. TKDE. Wang, K., Zhang, W., Zhang, Y., Qin, L., & Zhang, Y. (2021). Discovering significant communities on bipartite graphs: An index-based approach. TKDE.
173.
Zurück zum Zitat Wang, Y., Cai, S., & Yin, M. (2018). New heuristic approaches for maximum balanced biclique problem. Information Sciences, 432, 362–375.MathSciNetCrossRef Wang, Y., Cai, S., & Yin, M. (2018). New heuristic approaches for maximum balanced biclique problem. Information Sciences, 432, 362–375.MathSciNetCrossRef
177.
Zurück zum Zitat Yan, C., Burleigh, J. G., & Eulenstein, O. (2005). Identifying optimal incomplete phylogenetic data sets from sequence databases. Molecular Phylogenetics and Evolution, 35(3), 528–535.CrossRef Yan, C., Burleigh, J. G., & Eulenstein, O. (2005). Identifying optimal incomplete phylogenetic data sets from sequence databases. Molecular Phylogenetics and Evolution, 35(3), 528–535.CrossRef
179.
Zurück zum Zitat Yang, J., Peng, Y., & Zhang, W. (2022). (p,q)-biclique counting and enumeration for large sparse bipartite graphs. PVLDB, 15(2), 141–153. Yang, J., Peng, Y., & Zhang, W. (2022). (p,q)-biclique counting and enumeration for large sparse bipartite graphs. PVLDB, 15(2), 141–153.
182.
Zurück zum Zitat Yu, K., Long, C., Deepak, P., & Chakraborty, T. (2021). On efficient large maximal biplex discovery. TKDE. Yu, K., Long, C., Deepak, P., & Chakraborty, T. (2021). On efficient large maximal biplex discovery. TKDE.
189.
Zurück zum Zitat Zhang, Y., Phillips, C. A., Rogers, G. L., Baker, E. J., Chesler, E. J., & Langston, M. A. (2014). On finding bicliques in bipartite graphs: A novel algorithm and its application to the integration of diverse biological data types. BMC bioinformatics, 15(1), 110.CrossRef Zhang, Y., Phillips, C. A., Rogers, G. L., Baker, E. J., Chesler, E. J., & Langston, M. A. (2014). On finding bicliques in bipartite graphs: A novel algorithm and its application to the integration of diverse biological data types. BMC bioinformatics, 15(1), 110.CrossRef
191.
Zurück zum Zitat Zhang, Y., Wang, K., Zhang, W., Lin, X., & Zhang, Y. (2021). Pareto-optimal community search on large bipartite graphs. In CIKM (pp. 2647–2656). Zhang, Y., Wang, K., Zhang, W., Lin, X., & Zhang, Y. (2021). Pareto-optimal community search on large bipartite graphs. In CIKM (pp. 2647–2656).
198.
Zurück zum Zitat Zhou, Y., & Hao, J.-K. (2019). Tabu search with graph reduction for finding maximum balanced bicliques in bipartite graphs. Engineering Applications of Artificial Intelligence, 77, 86–97.CrossRef Zhou, Y., & Hao, J.-K. (2019). Tabu search with graph reduction for finding maximum balanced bicliques in bipartite graphs. Engineering Applications of Artificial Intelligence, 77, 86–97.CrossRef
200.
Zurück zum Zitat Zhou, Y., Rossi, A., & Hao, J.-K. (2018). Towards effective exact methods for the maximum balanced biclique problem in bipartite graphs. European Journal of Operational Research, 269(3), 834–843.MathSciNetCrossRef Zhou, Y., Rossi, A., & Hao, J.-K. (2018). Towards effective exact methods for the maximum balanced biclique problem in bipartite graphs. European Journal of Operational Research, 269(3), 834–843.MathSciNetCrossRef
206.
Zurück zum Zitat Zou, Z. (2016). Bitruss decomposition of bipartite graphs. In DASFAA (pp. 218–233). Springer. Zou, Z. (2016). Bitruss decomposition of bipartite graphs. In DASFAA (pp. 218–233). Springer.
Metadaten
Titel
CSS on Bipartite Networks
verfasst von
Yixiang Fang
Kai Wang
Xuemin Lin
Wenjie Zhang
Copyright-Jahr
2022
DOI
https://doi.org/10.1007/978-3-030-97568-5_3