Skip to main content

2019 | OriginalPaper | Buchkapitel

Current Scenario of Nanocomposite Materials for Fuel Cell Applications

verfasst von : Raveendra M. Hegde, Mahaveer D. Kurkuri, Madhuprasad Kigga

Erschienen in: Sustainable Polymer Composites and Nanocomposites

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Integration of hybrid nanocomposite materials in a fuel cell (FC) provides excellent improved properties such as proton conductivity, membrane stability. Similarly, the synergetic effect of materials used in nanocomposite membranes gives better water retention property, suppression of fuel crossover with reduced cost of operation. Currently available composite materials comprising of various metals, metal oxides, carbon materials and polymers display their superior properties in fuel cell applications. However, composite membranes have drawbacks such as CO poisoning, poor water retention capacity, and fuel crossover due to the less chemical and thermal stabilities. Recently, a tremendous advancement in various nanocomposite membranes led to superior properties in terms of high membrane stability, proton conductivity, suppression of fuel crossover, less CO poisoning. In this chapter, the recent developments in FC nanocomposite technology are systematically summarized. Furthermore, the advantages of the insertion of hybrid, clean, cheap and new variety of nanomaterials such as carbon nanotubes, graphene, chitosan and organic fillers in FC are neatly explained.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Hajilary N, Shahi A, Rezakazemi M (2018) Evaluation of socio-economic factors on CO2 emissions in Iran: factorial design and multivariable methods. J Clean Prod 189:108–115CrossRef Hajilary N, Shahi A, Rezakazemi M (2018) Evaluation of socio-economic factors on CO2 emissions in Iran: factorial design and multivariable methods. J Clean Prod 189:108–115CrossRef
2.
Zurück zum Zitat Hashemi F, Rowshanzamir S, Rezakazemi M (2012) CFD simulation of PEM fuel cell performance: effect of straight and serpentine flow fields. Math Comput Model 55(3–4):1540–1557CrossRef Hashemi F, Rowshanzamir S, Rezakazemi M (2012) CFD simulation of PEM fuel cell performance: effect of straight and serpentine flow fields. Math Comput Model 55(3–4):1540–1557CrossRef
3.
Zurück zum Zitat Winter M, Brodd RJ (2004) What are batteries, fuel cells, and supercapacitors? Chem Rev 104:4245–4269CrossRef Winter M, Brodd RJ (2004) What are batteries, fuel cells, and supercapacitors? Chem Rev 104:4245–4269CrossRef
4.
Zurück zum Zitat Lemons RA (1990) Fuel cells for transportation. J Power Sources 29(1–2):251–264CrossRef Lemons RA (1990) Fuel cells for transportation. J Power Sources 29(1–2):251–264CrossRef
5.
Zurück zum Zitat Peighambardoust S, Rowshanzamir S, Amjadi M (2010) Review of the proton exchange membranes for fuel cell applications. Int J Hydrogen Energy 35(17):9349–9384CrossRef Peighambardoust S, Rowshanzamir S, Amjadi M (2010) Review of the proton exchange membranes for fuel cell applications. Int J Hydrogen Energy 35(17):9349–9384CrossRef
6.
Zurück zum Zitat Giorgi L, Leccese F (2013) Fuel cells: technologies and applications. Open Fuel Cells J 6:1–20CrossRef Giorgi L, Leccese F (2013) Fuel cells: technologies and applications. Open Fuel Cells J 6:1–20CrossRef
7.
Zurück zum Zitat Agmon N (1995) The grotthuss mechanism. Chem Phys Lett 244(5):456–462CrossRef Agmon N (1995) The grotthuss mechanism. Chem Phys Lett 244(5):456–462CrossRef
8.
Zurück zum Zitat Ueki T, Watanabe M (2008) Macromolecules in ionic liquids: progress, challenges, and opportunities. Macromolecules 41(11):3739–3749CrossRef Ueki T, Watanabe M (2008) Macromolecules in ionic liquids: progress, challenges, and opportunities. Macromolecules 41(11):3739–3749CrossRef
9.
Zurück zum Zitat Rezakazemi M, Amooghin AE, Montazer Rashmati MM, Ismail AF, Matsuura T (2014) State-of-the-art membrane based CO2 separation using mixed matrix membranes (MMMs): an overview on current status and future directions. Prog Polym Sci 39(5):817–861CrossRef Rezakazemi M, Amooghin AE, Montazer Rashmati MM, Ismail AF, Matsuura T (2014) State-of-the-art membrane based CO2 separation using mixed matrix membranes (MMMs): an overview on current status and future directions. Prog Polym Sci 39(5):817–861CrossRef
10.
Zurück zum Zitat Rezakazemi M, Razavi S, Mohammadi T, Nazari GA (2011) Simulation and determination of optimum conditions of pervaporative dehydration of isopropanol process using synthesized PVA–APTEOS/TEOS nanocomposite membranes by means of expert systems. J Membr Sci 379(1–2):224–232CrossRef Rezakazemi M, Razavi S, Mohammadi T, Nazari GA (2011) Simulation and determination of optimum conditions of pervaporative dehydration of isopropanol process using synthesized PVA–APTEOS/TEOS nanocomposite membranes by means of expert systems. J Membr Sci 379(1–2):224–232CrossRef
11.
Zurück zum Zitat Dashti A, Harami HR, Rezakazemi M (2018) Accurate prediction of solubility of gases within H2-selective nanocomposite membranes using committee machine intelligent system. Int J Hydrogen Energy 43(13):6614–6624CrossRef Dashti A, Harami HR, Rezakazemi M (2018) Accurate prediction of solubility of gases within H2-selective nanocomposite membranes using committee machine intelligent system. Int J Hydrogen Energy 43(13):6614–6624CrossRef
12.
Zurück zum Zitat Rezakazemi M, Vatani A, Mohammadi T (2016) Synthesis and gas transport properties of crosslinked poly(dimethylsiloxane) nanocomposite membranes using octatrimethylsiloxy POSS nanoparticles. J Nat Gas Sci Eng 30:10–18CrossRef Rezakazemi M, Vatani A, Mohammadi T (2016) Synthesis and gas transport properties of crosslinked poly(dimethylsiloxane) nanocomposite membranes using octatrimethylsiloxy POSS nanoparticles. J Nat Gas Sci Eng 30:10–18CrossRef
13.
Zurück zum Zitat Rezakazemi M, Vatani A, Mohammadi T (2015) Synergistic interactions between POSS and fumed silica and their effect on the properties of crosslinked PDMS nanocomposite membranes. RSC Adv 5(100):82460–82470CrossRef Rezakazemi M, Vatani A, Mohammadi T (2015) Synergistic interactions between POSS and fumed silica and their effect on the properties of crosslinked PDMS nanocomposite membranes. RSC Adv 5(100):82460–82470CrossRef
14.
Zurück zum Zitat Rezakazemi M, Sadrzadeh M, Mohammadi T, Matsuura T (2017) Methods for the preparation of organic–inorganic nanocomposite polymer electrolyte membranes for fuel cells. In: Inamuddin D, Mohammad A, Asiri AM (eds) Organic-inorganic composite polymer electrolyte membranes. Springer International Publishing, Cham, pp 311–325CrossRef Rezakazemi M, Sadrzadeh M, Mohammadi T, Matsuura T (2017) Methods for the preparation of organic–inorganic nanocomposite polymer electrolyte membranes for fuel cells. In: Inamuddin D, Mohammad A, Asiri AM (eds) Organic-inorganic composite polymer electrolyte membranes. Springer International Publishing, Cham, pp 311–325CrossRef
16.
Zurück zum Zitat Rezakazemi M, Dashti A, Asghari M, Saeed S (2017) H2-selective mixed matrix membranes modeling using ANFIS, PSO-ANFIS GA-ANFIS. Int J Hydrogen Energy 42(22):15211–15225CrossRef Rezakazemi M, Dashti A, Asghari M, Saeed S (2017) H2-selective mixed matrix membranes modeling using ANFIS, PSO-ANFIS GA-ANFIS. Int J Hydrogen Energy 42(22):15211–15225CrossRef
17.
Zurück zum Zitat Baheri B, Mahnaz S, Razakazemi M, Elahe M, Mohammadi T (2014) Performance of PVA/NaA mixed matrix membrane for removal of water from ethylene glycol solutions by pervaporation. Chem Eng Commun 202(3):316–321CrossRef Baheri B, Mahnaz S, Razakazemi M, Elahe M, Mohammadi T (2014) Performance of PVA/NaA mixed matrix membrane for removal of water from ethylene glycol solutions by pervaporation. Chem Eng Commun 202(3):316–321CrossRef
18.
Zurück zum Zitat Shahverdi M, Baheri B, Razakazemi M, Elahe M, Mohammadi T (2013) Pervaporation study of ethylene glycol dehydration through synthesized (PVA-4A)/polypropylene mixed matrix composite membranes. Polym Eng Sci 53(7):1487–1493CrossRef Shahverdi M, Baheri B, Razakazemi M, Elahe M, Mohammadi T (2013) Pervaporation study of ethylene glycol dehydration through synthesized (PVA-4A)/polypropylene mixed matrix composite membranes. Polym Eng Sci 53(7):1487–1493CrossRef
19.
Zurück zum Zitat Rostamizadeh M, Rezakazemi M, Shahidi K, Mohammadi T (2013) Gas permeation through H2-selective mixed matrix membranes: Experimental and neural network modeling. Int J Hydrogen Energy 38(2):1128–1135CrossRef Rostamizadeh M, Rezakazemi M, Shahidi K, Mohammadi T (2013) Gas permeation through H2-selective mixed matrix membranes: Experimental and neural network modeling. Int J Hydrogen Energy 38(2):1128–1135CrossRef
20.
Zurück zum Zitat Rezakazemi M, Mohammadi T (2013) Gas sorption in H2-selective mixed matrix membranes: experimental and neural network modeling. Int J Hydrogen Energy 38(32):14035–14041CrossRef Rezakazemi M, Mohammadi T (2013) Gas sorption in H2-selective mixed matrix membranes: experimental and neural network modeling. Int J Hydrogen Energy 38(32):14035–14041CrossRef
21.
Zurück zum Zitat Rezakazemi M, Shahidi K, Mohammadi T (2012) Sorption properties of hydrogen-selective PDMS/zeolite 4A mixed matrix membrane. Int J Hydrogen Energy 37(22):17275–17284CrossRef Rezakazemi M, Shahidi K, Mohammadi T (2012) Sorption properties of hydrogen-selective PDMS/zeolite 4A mixed matrix membrane. Int J Hydrogen Energy 37(22):17275–17284CrossRef
22.
Zurück zum Zitat Rezakazemi M, Shahidi K, Mohammadi T (2012) Hydrogen separation and purification using crosslinkable PDMS/zeolite a nanoparticles mixed matrix membranes. Int J Hydrogen Energy 37(19):14576–14589CrossRef Rezakazemi M, Shahidi K, Mohammadi T (2012) Hydrogen separation and purification using crosslinkable PDMS/zeolite a nanoparticles mixed matrix membranes. Int J Hydrogen Energy 37(19):14576–14589CrossRef
23.
Zurück zum Zitat Rezakazemi M, Sadrzadeh M, Matsuura T (2018) Thermally stable polymers for advanced high-performance gas separation membranes. Prog Energy Combust Sci 66:1–41CrossRef Rezakazemi M, Sadrzadeh M, Matsuura T (2018) Thermally stable polymers for advanced high-performance gas separation membranes. Prog Energy Combust Sci 66:1–41CrossRef
24.
Zurück zum Zitat Boutsika LG, Enotiadis A, Nicotera I, Simari C, Charalambopoulou G, Giannelis EP, Steriotis T (2016) Nafion® nanocomposite membranes with enhanced properties at high temperature and low humidity environments. Int J Hydrogen Energy 41(47):22406–22414CrossRef Boutsika LG, Enotiadis A, Nicotera I, Simari C, Charalambopoulou G, Giannelis EP, Steriotis T (2016) Nafion® nanocomposite membranes with enhanced properties at high temperature and low humidity environments. Int J Hydrogen Energy 41(47):22406–22414CrossRef
25.
Zurück zum Zitat Mohammadi G, Jahanshahi M, Rahimpour A (2013) Fabrication and evaluation of Nafion nanocomposite membrane based on ZrO2–TiO2 binary nanoparticles as fuel cell MEA. Int J Hydrogen Energy 38(22):9387–9394CrossRef Mohammadi G, Jahanshahi M, Rahimpour A (2013) Fabrication and evaluation of Nafion nanocomposite membrane based on ZrO2–TiO2 binary nanoparticles as fuel cell MEA. Int J Hydrogen Energy 38(22):9387–9394CrossRef
26.
Zurück zum Zitat Hooshyari K, Javanbhakt M, Naji L, Enhessari M (2014) Nanocomposite proton exchange membranes based on Nafion containing Fe2 TiO5 nanoparticles in water and alcohol environments for PEMFC. J Membr Sci 454:74–81CrossRef Hooshyari K, Javanbhakt M, Naji L, Enhessari M (2014) Nanocomposite proton exchange membranes based on Nafion containing Fe2 TiO5 nanoparticles in water and alcohol environments for PEMFC. J Membr Sci 454:74–81CrossRef
27.
Zurück zum Zitat Wang Z, Tang H, Zhang H, Lei M, Chen R, Xiao P, Pan M (2012) Synthesis of Nafion/CeO2 hybrid for chemically durable proton exchange membrane of fuel cell. J Membr Sci 421:201–210CrossRef Wang Z, Tang H, Zhang H, Lei M, Chen R, Xiao P, Pan M (2012) Synthesis of Nafion/CeO2 hybrid for chemically durable proton exchange membrane of fuel cell. J Membr Sci 421:201–210CrossRef
28.
Zurück zum Zitat Cozzi D, de Bonis C, D’Epifanio A, Mecheri B, Tavares AC, Licoccia S (2014) Organically functionalized titanium oxide/Nafion composite proton exchange membranes for fuel cells applications. J Power Sources 248:1127–1132CrossRef Cozzi D, de Bonis C, D’Epifanio A, Mecheri B, Tavares AC, Licoccia S (2014) Organically functionalized titanium oxide/Nafion composite proton exchange membranes for fuel cells applications. J Power Sources 248:1127–1132CrossRef
29.
Zurück zum Zitat de Bonis C, Cozzi D, Mecheri B, D’Epifanio A, Rainer A, De Porcellenis D, Licoccia S (2014) Effect of filler surface functionalization on the performance of Nafion/Titanium oxide composite membranes. Electrochim Acta 147:418–425CrossRef de Bonis C, Cozzi D, Mecheri B, D’Epifanio A, Rainer A, De Porcellenis D, Licoccia S (2014) Effect of filler surface functionalization on the performance of Nafion/Titanium oxide composite membranes. Electrochim Acta 147:418–425CrossRef
30.
Zurück zum Zitat Yang Y, Cuiping H, Beibei J, James I, Chengen H, Dean S, Tao J, Zhiqun L (2016) Graphene-based materials with tailored nanostructures for energy conversion and storage. Mater Sci Eng R Rep 102:1–72CrossRef Yang Y, Cuiping H, Beibei J, James I, Chengen H, Dean S, Tao J, Zhiqun L (2016) Graphene-based materials with tailored nanostructures for energy conversion and storage. Mater Sci Eng R Rep 102:1–72CrossRef
31.
Zurück zum Zitat Farooqui U, Ahmad A, Hamid N (2018) Graphene oxide: a promising membrane material for fuel cells. Renew Sust Energy Rev 82:714–733CrossRef Farooqui U, Ahmad A, Hamid N (2018) Graphene oxide: a promising membrane material for fuel cells. Renew Sust Energy Rev 82:714–733CrossRef
32.
Zurück zum Zitat Tsang AC, Kwok HY, Leung DY (2017) The use of graphene based materials for fuel cell, photovoltaics, and supercapacitor electrode materials. Solid State Sci 67:A1–A14CrossRef Tsang AC, Kwok HY, Leung DY (2017) The use of graphene based materials for fuel cell, photovoltaics, and supercapacitor electrode materials. Solid State Sci 67:A1–A14CrossRef
33.
Zurück zum Zitat Das TK, Prusty S (2013) Graphene-based polymer composites and their applications. Polym Plast Technol Eng 52(4):319–331CrossRef Das TK, Prusty S (2013) Graphene-based polymer composites and their applications. Polym Plast Technol Eng 52(4):319–331CrossRef
34.
Zurück zum Zitat Zhu C, Dong S (2013) Recent progress in graphene-based nanomaterials as advanced electrocatalysts towards oxygen reduction reaction. Nanoscale 5(5):1753–1767CrossRef Zhu C, Dong S (2013) Recent progress in graphene-based nanomaterials as advanced electrocatalysts towards oxygen reduction reaction. Nanoscale 5(5):1753–1767CrossRef
35.
Zurück zum Zitat Fampiou I, Ramasubramaniam A (2012) Binding of Pt nanoclusters to point defects in graphene: adsorption, morphology, and electronic structure. J Phys Chem C 116(11):6543–6555CrossRef Fampiou I, Ramasubramaniam A (2012) Binding of Pt nanoclusters to point defects in graphene: adsorption, morphology, and electronic structure. J Phys Chem C 116(11):6543–6555CrossRef
36.
Zurück zum Zitat Liu M, Zhang R, Chen W (2014) Graphene-supported nanoelectrocatalysts for fuel cells: synthesis, properties, and applications. Chem Rev 114(10):5117–5160CrossRef Liu M, Zhang R, Chen W (2014) Graphene-supported nanoelectrocatalysts for fuel cells: synthesis, properties, and applications. Chem Rev 114(10):5117–5160CrossRef
37.
Zurück zum Zitat Huang H, Chen H, Sun D, Wang X (2012) Graphene nanoplate-Pt composite as a high performance electrocatalyst for direct methanol fuel cells. J Power Sources 204:46–52CrossRef Huang H, Chen H, Sun D, Wang X (2012) Graphene nanoplate-Pt composite as a high performance electrocatalyst for direct methanol fuel cells. J Power Sources 204:46–52CrossRef
38.
Zurück zum Zitat Qian W, Hao R, Zhou J, Eastman M, Manhat BA, Sun Q, Andrea MG, Jiao J (2013) Exfoliated graphene-supported Pt and Pt-based alloys as electrocatalysts for direct methanol fuel cells. Carbon 52:595–604CrossRef Qian W, Hao R, Zhou J, Eastman M, Manhat BA, Sun Q, Andrea MG, Jiao J (2013) Exfoliated graphene-supported Pt and Pt-based alloys as electrocatalysts for direct methanol fuel cells. Carbon 52:595–604CrossRef
39.
Zurück zum Zitat Peng K-J, Lai J-Y, Liu Y-L (2016) Nanohybrids of graphene oxide chemically-bonded with Nafion: preparation and application for proton exchange membrane fuel cells. J Membr Sci 514:86–94CrossRef Peng K-J, Lai J-Y, Liu Y-L (2016) Nanohybrids of graphene oxide chemically-bonded with Nafion: preparation and application for proton exchange membrane fuel cells. J Membr Sci 514:86–94CrossRef
40.
Zurück zum Zitat Zhou X, Tang S, Yin Y, Sun S, Qiao J (2016) Hierarchical porous N-doped graphene foams with superior oxygen reduction reactivity for polymer electrolyte membrane fuel cells. Appl Energy 175:459–467CrossRef Zhou X, Tang S, Yin Y, Sun S, Qiao J (2016) Hierarchical porous N-doped graphene foams with superior oxygen reduction reactivity for polymer electrolyte membrane fuel cells. Appl Energy 175:459–467CrossRef
41.
Zurück zum Zitat Kirubaharan CJ, Santhakumar K, Gnanankumar G, Senthilkumar N, Jang J (2015) Nitrogen doped graphene sheets as metal free anode catalysts for the high performance microbial fuel cells. Int J Hydrogen Energy 40(38):13061–13070CrossRef Kirubaharan CJ, Santhakumar K, Gnanankumar G, Senthilkumar N, Jang J (2015) Nitrogen doped graphene sheets as metal free anode catalysts for the high performance microbial fuel cells. Int J Hydrogen Energy 40(38):13061–13070CrossRef
42.
Zurück zum Zitat Rezakazemi M, Zhang Z (2018) Desulfurization materials A2—Dincer, Ibrahim comprehensive energy systems. Elsevier, Oxford, pp 944–979 Rezakazemi M, Zhang Z (2018) Desulfurization materials A2—Dincer, Ibrahim comprehensive energy systems. Elsevier, Oxford, pp 944–979
43.
Zurück zum Zitat Georgakilas V, Perman JA, Tucek J, Zboril R (2015) Broad family of carbon nanoallotropes: classification, chemistry, and applications of fullerenes, carbon dots, nanotubes, graphene, nanodiamonds, and combined superstructures. Chem Rev 115(11):4744–4822CrossRef Georgakilas V, Perman JA, Tucek J, Zboril R (2015) Broad family of carbon nanoallotropes: classification, chemistry, and applications of fullerenes, carbon dots, nanotubes, graphene, nanodiamonds, and combined superstructures. Chem Rev 115(11):4744–4822CrossRef
44.
Zurück zum Zitat Akbari E, Buntat Z (2017) Benefits of using carbon nanotubes in fuel cells: a review. Int J Energ Res 41(1):92–102CrossRef Akbari E, Buntat Z (2017) Benefits of using carbon nanotubes in fuel cells: a review. Int J Energ Res 41(1):92–102CrossRef
45.
Zurück zum Zitat Ghasemi M, Ismail M, Kamarudin SK, Saeedfar K, Wan Daud WR, Hassan SHA, Heng LY, Alam J, Oh SE (2013) Carbon nanotube as an alternative cathode support and catalyst for microbial fuel cells. Appl Energy 102:1050–1056CrossRef Ghasemi M, Ismail M, Kamarudin SK, Saeedfar K, Wan Daud WR, Hassan SHA, Heng LY, Alam J, Oh SE (2013) Carbon nanotube as an alternative cathode support and catalyst for microbial fuel cells. Appl Energy 102:1050–1056CrossRef
46.
Zurück zum Zitat Mehdinia A, Ziaei E, Jabbari A (2014) Multi-walled carbon nanotube/SnO2 nanocomposite: a novel anode material for microbial fuel cells. Electrochim Acta 130:512–518CrossRef Mehdinia A, Ziaei E, Jabbari A (2014) Multi-walled carbon nanotube/SnO2 nanocomposite: a novel anode material for microbial fuel cells. Electrochim Acta 130:512–518CrossRef
47.
Zurück zum Zitat Tohidian M, Ghaffarian SR (2017) Polyelectrolyte nanocomposite membranes with imidazole-functionalized multi-walled carbon nanotubes for use in fuel cell applications. J Macromol Sci B 56(10):725–738CrossRef Tohidian M, Ghaffarian SR (2017) Polyelectrolyte nanocomposite membranes with imidazole-functionalized multi-walled carbon nanotubes for use in fuel cell applications. J Macromol Sci B 56(10):725–738CrossRef
48.
Zurück zum Zitat Zhang R, He S, Lu Y, Chen W (2015) Fe Co, N-functionalized carbon nanotubes in situ grown on 3D porous N-doped carbon foams as a noble metal-free catalyst for oxygen reduction. J Mater Chem A 3(7):3559–3567CrossRef Zhang R, He S, Lu Y, Chen W (2015) Fe Co, N-functionalized carbon nanotubes in situ grown on 3D porous N-doped carbon foams as a noble metal-free catalyst for oxygen reduction. J Mater Chem A 3(7):3559–3567CrossRef
49.
Zurück zum Zitat Mishra P, Jain R (2016) Electrochemical deposition of MWCNT-MnO2/PPy nano-composite application for microbial fuel cells. Int J Hydrogen Energy 41(47):22394–22405CrossRef Mishra P, Jain R (2016) Electrochemical deposition of MWCNT-MnO2/PPy nano-composite application for microbial fuel cells. Int J Hydrogen Energy 41(47):22394–22405CrossRef
50.
Zurück zum Zitat Mirzaei F, Parnian MJ, Rowshanzamir S (2017) Durability investigation and performance study of hydrothermal synthesized platinum-multi walled carbon nanotube nanocomposite catalyst for proton exchange membrane fuel cell. Energy 138:696–705CrossRef Mirzaei F, Parnian MJ, Rowshanzamir S (2017) Durability investigation and performance study of hydrothermal synthesized platinum-multi walled carbon nanotube nanocomposite catalyst for proton exchange membrane fuel cell. Energy 138:696–705CrossRef
51.
Zurück zum Zitat Liew KB, Wan Daud WR, Ghasemi M, Loh KS, Ismail M, Lim SS, Leong JX (2015) Manganese oxide/functionalised carbon nanotubes nanocomposite as catalyst for oxygen reduction reaction in microbial fuel cell. Int J Hydrogen Energy 40(35):11625–11632CrossRef Liew KB, Wan Daud WR, Ghasemi M, Loh KS, Ismail M, Lim SS, Leong JX (2015) Manganese oxide/functionalised carbon nanotubes nanocomposite as catalyst for oxygen reduction reaction in microbial fuel cell. Int J Hydrogen Energy 40(35):11625–11632CrossRef
52.
Zurück zum Zitat Mourya V, Inamdar NN, Tiwari A (2010) Carboxymethyl chitosan and its applications. Adv Mater Lett 1(1):11–33CrossRef Mourya V, Inamdar NN, Tiwari A (2010) Carboxymethyl chitosan and its applications. Adv Mater Lett 1(1):11–33CrossRef
53.
Zurück zum Zitat Vakili M, Rafatullah M, Salamatinia B, Abdullah AZ, Ibrahim MH, Tan KB, Gholami Z, Amouzgar P (2014) Application of chitosan and its derivatives as adsorbents for dye removal from water and wastewater: a review. Carbohyd Polym 113:115–130CrossRef Vakili M, Rafatullah M, Salamatinia B, Abdullah AZ, Ibrahim MH, Tan KB, Gholami Z, Amouzgar P (2014) Application of chitosan and its derivatives as adsorbents for dye removal from water and wastewater: a review. Carbohyd Polym 113:115–130CrossRef
54.
Zurück zum Zitat Srinivasa P, Tharanathan R (2007) Chitin/chitosan—safe, ecofriendly packaging materials with multiple potential uses. Food Rev Int 23(1):53–72CrossRef Srinivasa P, Tharanathan R (2007) Chitin/chitosan—safe, ecofriendly packaging materials with multiple potential uses. Food Rev Int 23(1):53–72CrossRef
55.
Zurück zum Zitat Lim S-H, Hudson SM (2003) Review of Chitosan and its derivatives as antimicrobial agents and their uses as textile chemicals. J Macromol Sci C Polym Rev 43(2):223–269CrossRef Lim S-H, Hudson SM (2003) Review of Chitosan and its derivatives as antimicrobial agents and their uses as textile chemicals. J Macromol Sci C Polym Rev 43(2):223–269CrossRef
56.
Zurück zum Zitat Mourya V, Inamdar NN (2009) Trimethyl chitosan and its applications in drug delivery. J Mater Sci Mater Med 20(5):1057CrossRef Mourya V, Inamdar NN (2009) Trimethyl chitosan and its applications in drug delivery. J Mater Sci Mater Med 20(5):1057CrossRef
57.
Zurück zum Zitat Ilium L (1998) Chitosan and its use as a pharmaceutical excipient. Pharm Res 15(9):1326–1331CrossRef Ilium L (1998) Chitosan and its use as a pharmaceutical excipient. Pharm Res 15(9):1326–1331CrossRef
58.
Zurück zum Zitat Ma J, Sahai Y (2013) Chitosan biopolymer for fuel cell applications. Carbohydr Polym 92(2):955–975CrossRef Ma J, Sahai Y (2013) Chitosan biopolymer for fuel cell applications. Carbohydr Polym 92(2):955–975CrossRef
59.
Zurück zum Zitat Bai H, Zhang H, He Y, Liu J, Zhang B, Wang J (2014) Enhanced proton conduction of chitosan membrane enabled by halloysite nanotubes bearing sulfonate polyelectrolyte brushes. J Membr Sci 454:220–232CrossRef Bai H, Zhang H, He Y, Liu J, Zhang B, Wang J (2014) Enhanced proton conduction of chitosan membrane enabled by halloysite nanotubes bearing sulfonate polyelectrolyte brushes. J Membr Sci 454:220–232CrossRef
60.
Zurück zum Zitat Ma J, Sahai Y, Buchheit RG (2012) Evaluation of multivalent phosphate cross-linked chitosan biopolymer membrane for direct borohydride fuel cells. J Power Sources 202:18–27CrossRef Ma J, Sahai Y, Buchheit RG (2012) Evaluation of multivalent phosphate cross-linked chitosan biopolymer membrane for direct borohydride fuel cells. J Power Sources 202:18–27CrossRef
61.
Zurück zum Zitat Hasani-Sadrabadi MM, Dashtimoghadam E, Mokarram N, Majedi FS, Jacob KI (2012) Triple-layer proton exchange membranes based on chitosan biopolymer with reduced methanol crossover for high-performance direct methanol fuel cells application. Polymer 53(13):2643–2651CrossRef Hasani-Sadrabadi MM, Dashtimoghadam E, Mokarram N, Majedi FS, Jacob KI (2012) Triple-layer proton exchange membranes based on chitosan biopolymer with reduced methanol crossover for high-performance direct methanol fuel cells application. Polymer 53(13):2643–2651CrossRef
62.
Zurück zum Zitat Zhou T, He X, Song F, Xie K (2016) Chitosan modified by polymeric reactive dyes containing quanternary ammonium groups as a novel anion exchange membrane for alkaline fuel cells. Int J Electrochem Sci 11(1):590–608 Zhou T, He X, Song F, Xie K (2016) Chitosan modified by polymeric reactive dyes containing quanternary ammonium groups as a novel anion exchange membrane for alkaline fuel cells. Int J Electrochem Sci 11(1):590–608
63.
Zurück zum Zitat Li P-C, Liao G-M, Rajeshkumar S, Shih C-M, Yang C-C, Wang D-M, Lue SJ (2016) Fabrication and characterization of chitosan nanoparticle-incorporated quaternized poly (vinyl alcohol) composite membranes as solid electrolytes for direct methanol alkaline fuel cells. Electrochim Acta 187:616–628CrossRef Li P-C, Liao G-M, Rajeshkumar S, Shih C-M, Yang C-C, Wang D-M, Lue SJ (2016) Fabrication and characterization of chitosan nanoparticle-incorporated quaternized poly (vinyl alcohol) composite membranes as solid electrolytes for direct methanol alkaline fuel cells. Electrochim Acta 187:616–628CrossRef
64.
Zurück zum Zitat Santamaria M, Pecoraro CM, Di Quarto F, Bocchetta P (2015) Chitosan–phosphotungstic acid complex as membranes for low temperature H2–O2 fuel cell. J Power Sources 276:189–194CrossRef Santamaria M, Pecoraro CM, Di Quarto F, Bocchetta P (2015) Chitosan–phosphotungstic acid complex as membranes for low temperature H2–O2 fuel cell. J Power Sources 276:189–194CrossRef
65.
Zurück zum Zitat Noroozifar M, Motlagh MK, Kakhki M-S, Roghayeh K-M (2014) Enhanced electrocatalytic properties of Pt–chitosan nanocomposite for direct methanol fuel cell by LaFeO3 and carbon nanotube. J Power Sources 248:130–139CrossRef Noroozifar M, Motlagh MK, Kakhki M-S, Roghayeh K-M (2014) Enhanced electrocatalytic properties of Pt–chitosan nanocomposite for direct methanol fuel cell by LaFeO3 and carbon nanotube. J Power Sources 248:130–139CrossRef
66.
Zurück zum Zitat Linlin M, Mishra AK, Kim NH, Lee JH (2012) Poly (2,5-benzimidazole)–silica nanocomposite membranes for high temperature proton exchange membrane fuel cell. J Membr Sci 411:91–98CrossRef Linlin M, Mishra AK, Kim NH, Lee JH (2012) Poly (2,5-benzimidazole)–silica nanocomposite membranes for high temperature proton exchange membrane fuel cell. J Membr Sci 411:91–98CrossRef
67.
Zurück zum Zitat Chang Y-N, Lai J-Y, Liu Y-L (2012) Polybenzimidazole (PBI)-functionalized silica nanoparticles modified PBI nanocomposite membranes for proton exchange membranes fuel cells. J Membr Sci 403:1–7 Chang Y-N, Lai J-Y, Liu Y-L (2012) Polybenzimidazole (PBI)-functionalized silica nanoparticles modified PBI nanocomposite membranes for proton exchange membranes fuel cells. J Membr Sci 403:1–7
68.
Zurück zum Zitat Hooshyari K, Javanbhakt M, Shabanikia A, Enhessari M (2015) Fabrication BaZrO3/PBI-based nanocomposite as a new proton conducting membrane for high temperature proton exchange membrane fuel cells. J Power Sources 276:62–72CrossRef Hooshyari K, Javanbhakt M, Shabanikia A, Enhessari M (2015) Fabrication BaZrO3/PBI-based nanocomposite as a new proton conducting membrane for high temperature proton exchange membrane fuel cells. J Power Sources 276:62–72CrossRef
69.
Zurück zum Zitat Devrim Y, Devrim H, Eroglu I (2016) Polybenzimidazole/SiO2 hybrid membranes for high temperature proton exchange membrane fuel cells. Int J Hydrogen Energy 41(23):10044–10052CrossRef Devrim Y, Devrim H, Eroglu I (2016) Polybenzimidazole/SiO2 hybrid membranes for high temperature proton exchange membrane fuel cells. Int J Hydrogen Energy 41(23):10044–10052CrossRef
70.
Zurück zum Zitat Wu J-F, Lo C-F, Li H-Y, Chang C-M, Liao K-S, Hu C-C, Liu Y-L, Lue S-J (2014) Thermally stable polybenzimidazole/carbon nano-tube composites for alkaline direct methanol fuel cell applications. J Power Sources 246:39–48CrossRef Wu J-F, Lo C-F, Li H-Y, Chang C-M, Liao K-S, Hu C-C, Liu Y-L, Lue S-J (2014) Thermally stable polybenzimidazole/carbon nano-tube composites for alkaline direct methanol fuel cell applications. J Power Sources 246:39–48CrossRef
71.
Zurück zum Zitat Özdemir Y, Özkan N, Devrim Y (2017) Fabrication and characterization of cross-linked polybenzimidazole based membranes for high temperature PEM fuel cells. Electrochim Acta 245:1–13CrossRef Özdemir Y, Özkan N, Devrim Y (2017) Fabrication and characterization of cross-linked polybenzimidazole based membranes for high temperature PEM fuel cells. Electrochim Acta 245:1–13CrossRef
72.
Zurück zum Zitat Hogarth WH, Da Costa JD, Lu GM (2005) Solid acid membranes for high temperature proton exchange membrane fuel cells. J Power Sources 142(1):223–237CrossRef Hogarth WH, Da Costa JD, Lu GM (2005) Solid acid membranes for high temperature proton exchange membrane fuel cells. J Power Sources 142(1):223–237CrossRef
73.
Zurück zum Zitat Tripathi BP, Shahi VK (2007) SPEEK–zirconium hydrogen phosphate composite membranes with low methanol permeability prepared by electro-migration and in situ precipitation. J Colloid Interface Sci 316(2):612–621CrossRef Tripathi BP, Shahi VK (2007) SPEEK–zirconium hydrogen phosphate composite membranes with low methanol permeability prepared by electro-migration and in situ precipitation. J Colloid Interface Sci 316(2):612–621CrossRef
74.
Zurück zum Zitat Lim SS, Wan Daud WR, Jahim J, Ghasemi M, Chong PS, Ismail M (2012) Sulfonated poly (ether ether ketone)/poly (ether sulfone) composite membranes as an alternative proton exchange membrane in microbial fuel cells. Int J Hydrogen Energy 37(15):11409–11424CrossRef Lim SS, Wan Daud WR, Jahim J, Ghasemi M, Chong PS, Ismail M (2012) Sulfonated poly (ether ether ketone)/poly (ether sulfone) composite membranes as an alternative proton exchange membrane in microbial fuel cells. Int J Hydrogen Energy 37(15):11409–11424CrossRef
75.
Zurück zum Zitat Jiang Z, Zhao X, Manthiram A (2013) Sulfonated poly (ether ether ketone) membranes with sulfonated graphene oxide fillers for direct methanol fuel cells. Int J Hydrogen Energy 38(14):5875–5884CrossRef Jiang Z, Zhao X, Manthiram A (2013) Sulfonated poly (ether ether ketone) membranes with sulfonated graphene oxide fillers for direct methanol fuel cells. Int J Hydrogen Energy 38(14):5875–5884CrossRef
76.
Zurück zum Zitat Heo Y, Im H, Kim J (2013) The effect of sulfonated graphene oxide on sulfonated poly (ether ether ketone) membrane for direct methanol fuel cells. J Membr Sci 425:11–22CrossRef Heo Y, Im H, Kim J (2013) The effect of sulfonated graphene oxide on sulfonated poly (ether ether ketone) membrane for direct methanol fuel cells. J Membr Sci 425:11–22CrossRef
77.
Zurück zum Zitat Wang J, Bai H, Zhang H, Zhao L, Yifan Li C (2015) Anhydrous proton exchange membrane of sulfonated poly (ether ether ketone) enabled by polydopamine-modified silica nanoparticles. Electrochim Acta 152:443–455CrossRef Wang J, Bai H, Zhang H, Zhao L, Yifan Li C (2015) Anhydrous proton exchange membrane of sulfonated poly (ether ether ketone) enabled by polydopamine-modified silica nanoparticles. Electrochim Acta 152:443–455CrossRef
78.
Zurück zum Zitat Gang M, He G, Li Z, Cao K, Li Z, Yin Y, Wu H, Jiang Z (2016) Graphitic carbon nitride nanosheets/sulfonated poly (ether ether ketone) nanocomposite membrane for direct methanol fuel cell application. J Membr Sci 507:1–11CrossRef Gang M, He G, Li Z, Cao K, Li Z, Yin Y, Wu H, Jiang Z (2016) Graphitic carbon nitride nanosheets/sulfonated poly (ether ether ketone) nanocomposite membrane for direct methanol fuel cell application. J Membr Sci 507:1–11CrossRef
79.
Zurück zum Zitat Mossayebi Z, Saririchi T, Rowshanzamir S, Parnian MJ (2016) Investigation and optimization of physicochemical properties of sulfated zirconia/sulfonated poly (ether ether ketone) nanocomposite membranes for medium temperature proton exchange membrane fuel cells. Int J Hydrogen Energy 41(28):12293–12306CrossRef Mossayebi Z, Saririchi T, Rowshanzamir S, Parnian MJ (2016) Investigation and optimization of physicochemical properties of sulfated zirconia/sulfonated poly (ether ether ketone) nanocomposite membranes for medium temperature proton exchange membrane fuel cells. Int J Hydrogen Energy 41(28):12293–12306CrossRef
80.
Zurück zum Zitat Rahnavard A, Rowshanzamir S, Parnian MJ, Amirkhanlou GR (2015) The effect of sulfonated poly (ether ether ketone) as the electrode ionomer for self-humidifying nanocomposite proton exchange membrane fuel cells. Energy 82:746–757CrossRef Rahnavard A, Rowshanzamir S, Parnian MJ, Amirkhanlou GR (2015) The effect of sulfonated poly (ether ether ketone) as the electrode ionomer for self-humidifying nanocomposite proton exchange membrane fuel cells. Energy 82:746–757CrossRef
81.
Zurück zum Zitat Salarizadeh P, Javanbhakht M, Abdollahi M, Naji L (2013) Preparation, characterization and properties of proton exchange nanocomposite membranes based on poly (vinyl alcohol) and poly (sulfonic acid)-grafted silica nanoparticles. Int J Hydrogen Energy 38(13):5473–5479CrossRef Salarizadeh P, Javanbhakht M, Abdollahi M, Naji L (2013) Preparation, characterization and properties of proton exchange nanocomposite membranes based on poly (vinyl alcohol) and poly (sulfonic acid)-grafted silica nanoparticles. Int J Hydrogen Energy 38(13):5473–5479CrossRef
82.
Zurück zum Zitat Liew C-W, Ramesh S, Arof A (2014) A novel approach on ionic liquid-based poly (vinyl alcohol) proton conductive polymer electrolytes for fuel cell applications. Int J Hydrogen Energy 39(6):2917–2928CrossRef Liew C-W, Ramesh S, Arof A (2014) A novel approach on ionic liquid-based poly (vinyl alcohol) proton conductive polymer electrolytes for fuel cell applications. Int J Hydrogen Energy 39(6):2917–2928CrossRef
83.
Zurück zum Zitat Beydaghi H, Javanbakht M, Kowsari E (2014) Synthesis and characterization of poly (vinyl alcohol)/sulfonated graphene oxide nanocomposite membranes for use in proton exchange membrane fuel cells (PEMFCs). Ind Eng Chem Res 53(43):16621–16632CrossRef Beydaghi H, Javanbakht M, Kowsari E (2014) Synthesis and characterization of poly (vinyl alcohol)/sulfonated graphene oxide nanocomposite membranes for use in proton exchange membrane fuel cells (PEMFCs). Ind Eng Chem Res 53(43):16621–16632CrossRef
84.
Zurück zum Zitat Mollá S, Compañ V (2015) Nanocomposite SPEEK-based membranes for direct methanol fuel cells at intermediate temperatures. J Membr Sci 492:123–136CrossRef Mollá S, Compañ V (2015) Nanocomposite SPEEK-based membranes for direct methanol fuel cells at intermediate temperatures. J Membr Sci 492:123–136CrossRef
85.
Zurück zum Zitat Yang J-M, Wang N-C, Chiu H-C (2014) Preparation and characterization of poly (vinyl alcohol)/sodium alginate blended membrane for alkaline solid polymer electrolytes membrane. J Membr Sci 457:139–148CrossRef Yang J-M, Wang N-C, Chiu H-C (2014) Preparation and characterization of poly (vinyl alcohol)/sodium alginate blended membrane for alkaline solid polymer electrolytes membrane. J Membr Sci 457:139–148CrossRef
86.
Zurück zum Zitat Huang C-Y, Lin J-S, Pan W-H, Shih C-M, Liu Y-L, Lue S-J (2016) Alkaline direct ethanol fuel cell performance using alkali-impregnated polyvinyl alcohol/functionalized carbon nano-tube solid electrolytes. J Power Sources 303:267–277CrossRef Huang C-Y, Lin J-S, Pan W-H, Shih C-M, Liu Y-L, Lue S-J (2016) Alkaline direct ethanol fuel cell performance using alkali-impregnated polyvinyl alcohol/functionalized carbon nano-tube solid electrolytes. J Power Sources 303:267–277CrossRef
Metadaten
Titel
Current Scenario of Nanocomposite Materials for Fuel Cell Applications
verfasst von
Raveendra M. Hegde
Mahaveer D. Kurkuri
Madhuprasad Kigga
Copyright-Jahr
2019
DOI
https://doi.org/10.1007/978-3-030-05399-4_20

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.