Skip to main content

2020 | OriginalPaper | Buchkapitel

5. Damage Detection in Smart Composite Plates

verfasst von : Ranjan Ganguli

Erschienen in: Structural Health Monitoring

Verlag: Springer Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this chapter, a damage detection approach for a smart composite structure is presented. A brief background on smart structures is provided in Sect. 5.1. Smart structural systems have gained importance in recent years and have found applications in aerospace, automotive, and space applications [14]. A structure can be made smart by introducing sensors, actuators, and information processing algorithms.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Chopra, I. (2002). Review of state of art of smart structures and integrated systems. AIAA Journal, 40, 2145–2187.CrossRef Chopra, I. (2002). Review of state of art of smart structures and integrated systems. AIAA Journal, 40, 2145–2187.CrossRef
2.
Zurück zum Zitat Irschik, H. (2002). A review on static and dynamic shape control of structures by piezoelectric actuation. Engineering Structures, 24, 5–11.CrossRef Irschik, H. (2002). A review on static and dynamic shape control of structures by piezoelectric actuation. Engineering Structures, 24, 5–11.CrossRef
3.
Zurück zum Zitat Hurlebausa, H., & Gaul, L. (2006). Smart structure dynamics. Mechanical Systems and Signal Processing, 20, 255–281.CrossRef Hurlebausa, H., & Gaul, L. (2006). Smart structure dynamics. Mechanical Systems and Signal Processing, 20, 255–281.CrossRef
4.
Zurück zum Zitat Loewy, R. G. (1997). Recent developments in smart structures with aeronautical applications smart material. Structure, 6, 11–42. Loewy, R. G. (1997). Recent developments in smart structures with aeronautical applications smart material. Structure, 6, 11–42.
5.
Zurück zum Zitat Umesh, K., & Ganguli, R. (2011). Composite material and piezoelectric coefficient uncertainty effects on structural health monitoring using feedback control gains as damage indicators. Structural Health Monitoring, 10, 115–129.CrossRef Umesh, K., & Ganguli, R. (2011). Composite material and piezoelectric coefficient uncertainty effects on structural health monitoring using feedback control gains as damage indicators. Structural Health Monitoring, 10, 115–129.CrossRef
6.
Zurück zum Zitat Ihn, J. B., & Chang, F. K. (2008). Pitch-catch active sensing methods in structural health monitoring for aircraft structures. Structural Health Monitoring, 7(1), 5–19.CrossRef Ihn, J. B., & Chang, F. K. (2008). Pitch-catch active sensing methods in structural health monitoring for aircraft structures. Structural Health Monitoring, 7(1), 5–19.CrossRef
7.
Zurück zum Zitat Auweraer, H. V., & Peeters, B. (2003). International research projects on structural health monitoring: An overview. Structural Health Monitoring, 2(4), 341–358.CrossRef Auweraer, H. V., & Peeters, B. (2003). International research projects on structural health monitoring: An overview. Structural Health Monitoring, 2(4), 341–358.CrossRef
8.
Zurück zum Zitat Chang, P. C., Flatau, A., & Liu, S. C. (2003). Review paper: Health monitoring of civil infrastructure. Structural Health Monitoring, 2(3), 257–267.CrossRef Chang, P. C., Flatau, A., & Liu, S. C. (2003). Review paper: Health monitoring of civil infrastructure. Structural Health Monitoring, 2(3), 257–267.CrossRef
9.
Zurück zum Zitat Worden, K., & Dulieu-Barton, J. M. (2004). An overview of intelligent fault detection in systems and structures. Structural Health Monitoring, 3(1), 85–98.CrossRef Worden, K., & Dulieu-Barton, J. M. (2004). An overview of intelligent fault detection in systems and structures. Structural Health Monitoring, 3(1), 85–98.CrossRef
10.
Zurück zum Zitat Carden, E. P., & Fanning, P. (2004). Vibration based condition monitoring: A review. Structural Health Monitoring, 3(4), 355–377.CrossRef Carden, E. P., & Fanning, P. (2004). Vibration based condition monitoring: A review. Structural Health Monitoring, 3(4), 355–377.CrossRef
11.
Zurück zum Zitat Mal, A., Ricci, F., Banerjee, S., & Shih, F. (2005). A conceptual structural health monitoring system based on vibration and wave propagation. Structural Health Monitoring, 4(3), 283–293.CrossRef Mal, A., Ricci, F., Banerjee, S., & Shih, F. (2005). A conceptual structural health monitoring system based on vibration and wave propagation. Structural Health Monitoring, 4(3), 283–293.CrossRef
12.
Zurück zum Zitat Raghavan, A., & Cesnik, C. E. S. (2006). 3-D Elasticity-based modeling of anisotropic piezocomposite transducers for guided wave structural health monitoring. In 47th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, 1–4 May 2006. Newport, Rhode Island, AIAA, 2006–1793. Raghavan, A., & Cesnik, C. E. S. (2006). 3-D Elasticity-based modeling of anisotropic piezocomposite transducers for guided wave structural health monitoring. In 47th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, 1–4 May 2006. Newport, Rhode Island, AIAA, 2006–1793.
13.
Zurück zum Zitat Chrysochoidis, N. A., & Saravanos, D. A. (2009). High-frequency dispersion characteristics of smart delaminated composite beams. Journal of Intelligent Material Systems and Structures, 20(9), 1057–1068. Chrysochoidis, N. A., & Saravanos, D. A. (2009). High-frequency dispersion characteristics of smart delaminated composite beams. Journal of Intelligent Material Systems and Structures, 20(9), 1057–1068.
14.
Zurück zum Zitat Qing, X. P., Beard, S. J., Kumar, A., Ooi, T. K., & Chang, F. K. (2007). Built-in sensor network for structural health monitoring of composite structure. Journal of Intelligent Material Systems and Structures, 18(1), 39–49.CrossRef Qing, X. P., Beard, S. J., Kumar, A., Ooi, T. K., & Chang, F. K. (2007). Built-in sensor network for structural health monitoring of composite structure. Journal of Intelligent Material Systems and Structures, 18(1), 39–49.CrossRef
15.
Zurück zum Zitat Hu, N., Fukunaga, H., & Kameyama, M. (2006). Identification of delaminations in composite laminates. Journal of Intelligent Material Systems and Structures, 17(8–9), 671–683.CrossRef Hu, N., Fukunaga, H., & Kameyama, M. (2006). Identification of delaminations in composite laminates. Journal of Intelligent Material Systems and Structures, 17(8–9), 671–683.CrossRef
16.
Zurück zum Zitat Kirikera, G. R., Shinde, V., Schulz, M. J., Ghoshal, A., Sundaresan, M. J., Allemang, R. J., et al. (2008). A structural neural system for real-time health monitoring of composite materials. Structural Health Monitoring, 7(1), 65–83. Kirikera, G. R., Shinde, V., Schulz, M. J., Ghoshal, A., Sundaresan, M. J., Allemang, R. J., et al. (2008). A structural neural system for real-time health monitoring of composite materials. Structural Health Monitoring, 7(1), 65–83.
17.
Zurück zum Zitat Su, Z., & Ye, L. (2004). Fundamental lamb mode-based delamination detection for CF/EP composite laminates using distributed piezoelectrics. Structural Health Monitoring, 3(1), 43–68.CrossRef Su, Z., & Ye, L. (2004). Fundamental lamb mode-based delamination detection for CF/EP composite laminates using distributed piezoelectrics. Structural Health Monitoring, 3(1), 43–68.CrossRef
18.
Zurück zum Zitat Ghoshal, A., Chattopadhyay, A., Schulz, M. J., Thornburgh, R., & Waldron, K. (2003). Experimental investigation of damage detection in composite material structures using a laser vibrometer and piezoelectric actuators. Journal of Intelligent Material Systems and Structures, 14(8), 521–537.CrossRef Ghoshal, A., Chattopadhyay, A., Schulz, M. J., Thornburgh, R., & Waldron, K. (2003). Experimental investigation of damage detection in composite material structures using a laser vibrometer and piezoelectric actuators. Journal of Intelligent Material Systems and Structures, 14(8), 521–537.CrossRef
19.
Zurück zum Zitat Hamey, C. S., Lestari, W., Qiao, P., & Song, G. (2004). Experimental damage identification of carbon/epoxy composite beams using curvature mode shapes. Structural Health Monitoring, 3(4), 333–353.CrossRef Hamey, C. S., Lestari, W., Qiao, P., & Song, G. (2004). Experimental damage identification of carbon/epoxy composite beams using curvature mode shapes. Structural Health Monitoring, 3(4), 333–353.CrossRef
20.
Zurück zum Zitat Giurgiutiu, V., & Zagrai, A. (2005). Damage detection in thin plates and aerospace structures with the electro-mechanical impedance method. Structural Health Monitoring, 4(2), 99–118.CrossRef Giurgiutiu, V., & Zagrai, A. (2005). Damage detection in thin plates and aerospace structures with the electro-mechanical impedance method. Structural Health Monitoring, 4(2), 99–118.CrossRef
21.
Zurück zum Zitat Sankararaman, S., & Mahadevan, S. (2009). Uncertainty quantification in structural health monitoring. In 50th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference 17th, 4–7 May 2009. Palm Springs, California, AIAA, 2009–2377. Sankararaman, S., & Mahadevan, S. (2009). Uncertainty quantification in structural health monitoring. In 50th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference 17th, 4–7 May 2009. Palm Springs, California, AIAA, 2009–2377.
22.
Zurück zum Zitat Pawar, P. M., & Ganguli, R. (2003). Genetic fuzzy system for damage detection in beams and helicopter rotor blades. Computer Methods in Applied Mechanics and Engineering, 192(16–18), 2031–2057.MATHCrossRef Pawar, P. M., & Ganguli, R. (2003). Genetic fuzzy system for damage detection in beams and helicopter rotor blades. Computer Methods in Applied Mechanics and Engineering, 192(16–18), 2031–2057.MATHCrossRef
23.
Zurück zum Zitat Petryna, Y. S., & Kratzig, W. B. (2005). Compliance-based structural damage measure and its sensitivity to uncertainties. Computers and Structures, 83, 1113–1133.CrossRef Petryna, Y. S., & Kratzig, W. B. (2005). Compliance-based structural damage measure and its sensitivity to uncertainties. Computers and Structures, 83, 1113–1133.CrossRef
24.
Zurück zum Zitat Chandrashekhar, M., & Ganguli, R. (2009). Uncertainty handling in structural damage detection using fuzzy logic and probabilistic simulation. Mechanical Systems and Signal Processing, 23, 384–404.CrossRef Chandrashekhar, M., & Ganguli, R. (2009). Uncertainty handling in structural damage detection using fuzzy logic and probabilistic simulation. Mechanical Systems and Signal Processing, 23, 384–404.CrossRef
25.
Zurück zum Zitat Chandrashekhar, M., & Ganguli, R. (2009). Damage assessment of structures with uncertainty by using mode-shape curvatures and fuzzy logic. Journal of Sound and Vibration, 326, 939–957.CrossRef Chandrashekhar, M., & Ganguli, R. (2009). Damage assessment of structures with uncertainty by using mode-shape curvatures and fuzzy logic. Journal of Sound and Vibration, 326, 939–957.CrossRef
26.
Zurück zum Zitat Bakhary, N., Hao, H., & Deeks, A. J. (2007). Damage detection using artificial neural network with consideration of uncertainties. Engineering Structures, 29(11), 2806–2815.CrossRef Bakhary, N., Hao, H., & Deeks, A. J. (2007). Damage detection using artificial neural network with consideration of uncertainties. Engineering Structures, 29(11), 2806–2815.CrossRef
27.
Zurück zum Zitat Lew, J. S. (2008). Reduction of uncertainty effect on damage identification using feedback control. Journal of Sound and Vibration, 318, 903–910.CrossRef Lew, J. S. (2008). Reduction of uncertainty effect on damage identification using feedback control. Journal of Sound and Vibration, 318, 903–910.CrossRef
28.
Zurück zum Zitat Murugan, S., Ganguli, R., & Harursampath, D. (2008). Aeroelastic response of composite helicopter rotor with random material properties. Journal of Aircraft, 45(1), 306–322.CrossRef Murugan, S., Ganguli, R., & Harursampath, D. (2008). Aeroelastic response of composite helicopter rotor with random material properties. Journal of Aircraft, 45(1), 306–322.CrossRef
29.
Zurück zum Zitat Onkar, A. K., Upadhyay, C. S., & Yadav, D. (2007). Stochastic finite element buckling analysis of laminated plates with circular cutout under uniaxial compression. Journal of Applied Mechanics, 74, 798–809.CrossRef Onkar, A. K., Upadhyay, C. S., & Yadav, D. (2007). Stochastic finite element buckling analysis of laminated plates with circular cutout under uniaxial compression. Journal of Applied Mechanics, 74, 798–809.CrossRef
30.
Zurück zum Zitat Liang, Y. C., & Hwu, C. (1996). Electromechanical analysis of defects in piezoelectric materials. Smart Materials and Structures, 5(3), 314–320.CrossRef Liang, Y. C., & Hwu, C. (1996). Electromechanical analysis of defects in piezoelectric materials. Smart Materials and Structures, 5(3), 314–320.CrossRef
31.
Zurück zum Zitat Burianova, L., Kopal, A., & Nosek, J. (2003). Characterization of advanced piezoelectric materials in the wide temperature range. Materials Science and Engineering B, 99, 187–191.CrossRef Burianova, L., Kopal, A., & Nosek, J. (2003). Characterization of advanced piezoelectric materials in the wide temperature range. Materials Science and Engineering B, 99, 187–191.CrossRef
32.
Zurück zum Zitat Alguero, M., Cheng, B. L., Guiu, F., Reece, M. J., Poole, M., & Aiford, N. (2001). Degradation of the \(d_{33}\) piezoelectric coefficient for PZT ceramics under static and cyclic compressive loading. Journal of European Ceramic Society, 21, 1437–1440.CrossRef Alguero, M., Cheng, B. L., Guiu, F., Reece, M. J., Poole, M., & Aiford, N. (2001). Degradation of the \(d_{33}\) piezoelectric coefficient for PZT ceramics under static and cyclic compressive loading. Journal of European Ceramic Society, 21, 1437–1440.CrossRef
33.
Zurück zum Zitat Li, F., Xu, Z., Wei, X. Y., & Yao, X. (2009). Determination of temperature dependence of piezoelectric coefficients matrix of lead zirconate titanate ceramics by quasi-static and resonance method. Journal of Physics D: Applied Physics, 42(9), 095417.CrossRef Li, F., Xu, Z., Wei, X. Y., & Yao, X. (2009). Determination of temperature dependence of piezoelectric coefficients matrix of lead zirconate titanate ceramics by quasi-static and resonance method. Journal of Physics D: Applied Physics, 42(9), 095417.CrossRef
34.
Zurück zum Zitat Rabinovitch, O., & Vinson, J. R. (2002). Adhesive layer effects in surface-mounted piezoelectric actuators. Journal of Intelligent Material Systems and Structures, 13(11), 689–704.CrossRef Rabinovitch, O., & Vinson, J. R. (2002). Adhesive layer effects in surface-mounted piezoelectric actuators. Journal of Intelligent Material Systems and Structures, 13(11), 689–704.CrossRef
35.
Zurück zum Zitat Park, J. M., Kim, D. S., & Han, S. B. (2000). Properties of interfacial adhesion for vibration controllability of composite materials as smart structures. Composites Science and Technology, 60(10), 1953–1963.CrossRef Park, J. M., Kim, D. S., & Han, S. B. (2000). Properties of interfacial adhesion for vibration controllability of composite materials as smart structures. Composites Science and Technology, 60(10), 1953–1963.CrossRef
36.
Zurück zum Zitat Araujo, A. L., Soares, C. M. M., Herskovits, J., & Pedersen, P. (2009). Estimation of piezoelastic and viscoelastic properties in laminated structures. Composite Structures, 87, 168–174.CrossRef Araujo, A. L., Soares, C. M. M., Herskovits, J., & Pedersen, P. (2009). Estimation of piezoelastic and viscoelastic properties in laminated structures. Composite Structures, 87, 168–174.CrossRef
37.
Zurück zum Zitat Palma, R., Rus, G., & Gallego, R. (2009). Probabilistic inverse problem and system uncertainties for damage detection in piezoelectrics. Mechanics of Materials, 41, 1000–1016.CrossRef Palma, R., Rus, G., & Gallego, R. (2009). Probabilistic inverse problem and system uncertainties for damage detection in piezoelectrics. Mechanics of Materials, 41, 1000–1016.CrossRef
38.
Zurück zum Zitat Ghanem, R. (1999). Ingredients for a general purpose stochastic finite elements implementation. Computer Methods in Applied Mechanics and Engineering, 168, 19–34.MathSciNetMATHCrossRef Ghanem, R. (1999). Ingredients for a general purpose stochastic finite elements implementation. Computer Methods in Applied Mechanics and Engineering, 168, 19–34.MathSciNetMATHCrossRef
39.
Zurück zum Zitat Stefanou, G. (2009). The stochastic finite element method: Past, present and future. Computer Methods in Applied Mechanics and Engineering, 198, 1031–1051.MATHCrossRef Stefanou, G. (2009). The stochastic finite element method: Past, present and future. Computer Methods in Applied Mechanics and Engineering, 198, 1031–1051.MATHCrossRef
40.
Zurück zum Zitat Crestaux, T., Maitre, O. L., & Martinez, J. M. (2009). Polynomial chaos expansion for sensitivity analysis. Reliability Engineering and System Safety, 94, 1161–1172.CrossRef Crestaux, T., Maitre, O. L., & Martinez, J. M. (2009). Polynomial chaos expansion for sensitivity analysis. Reliability Engineering and System Safety, 94, 1161–1172.CrossRef
41.
Zurück zum Zitat Guoliang, J., Lin, C., & Jiamei, D. (1993). Monte Carlo finite element method of structure reliability analysis. Reliability Engineering and System Safety, 40, 77–83.CrossRef Guoliang, J., Lin, C., & Jiamei, D. (1993). Monte Carlo finite element method of structure reliability analysis. Reliability Engineering and System Safety, 40, 77–83.CrossRef
42.
Zurück zum Zitat Vinckenroy, G. V., & de Wilde, W. P. (1995). The use of Monte Carlo techniques in statistical finite element methods for the determination of the structural behavior of composite materials structural components. Composite Structures, 32, 247–253.CrossRef Vinckenroy, G. V., & de Wilde, W. P. (1995). The use of Monte Carlo techniques in statistical finite element methods for the determination of the structural behavior of composite materials structural components. Composite Structures, 32, 247–253.CrossRef
43.
Zurück zum Zitat Carrere, N., Rollet, Y., Leroy, F. H., & Maire, J. F. (2009). Efficient structural computations with parameters uncertainty for composite applications. Composites Science and Technology, 69, 1328–1333.CrossRef Carrere, N., Rollet, Y., Leroy, F. H., & Maire, J. F. (2009). Efficient structural computations with parameters uncertainty for composite applications. Composites Science and Technology, 69, 1328–1333.CrossRef
44.
Zurück zum Zitat Marseguerra, M., & Zio, E. (2009). Monte Carlo simulation for model-based fault diagnosis in dynamic systems. Reliability Engineering and System Safety, 94, 180–186.CrossRef Marseguerra, M., & Zio, E. (2009). Monte Carlo simulation for model-based fault diagnosis in dynamic systems. Reliability Engineering and System Safety, 94, 180–186.CrossRef
45.
Zurück zum Zitat Allegri, G., Corradi, S., & Marchetti, M. (2006). Stochastic analysis of the vibrations of an uncertain composite truss for space applications. Composites Science and Technology, 66, 273–282.CrossRef Allegri, G., Corradi, S., & Marchetti, M. (2006). Stochastic analysis of the vibrations of an uncertain composite truss for space applications. Composites Science and Technology, 66, 273–282.CrossRef
46.
Zurück zum Zitat Fishman, G. S. (1996). Monte Carlo: Concepts, algorithms, and applications. New York: Springer. Fishman, G. S. (1996). Monte Carlo: Concepts, algorithms, and applications. New York: Springer.
47.
Zurück zum Zitat Chandrashekhar, M., & Ganguli, R. (2009). Structural damage detection using modal curvature and fuzzy logic. Structural Health Monitoring, 8(4), 267–282.CrossRef Chandrashekhar, M., & Ganguli, R. (2009). Structural damage detection using modal curvature and fuzzy logic. Structural Health Monitoring, 8(4), 267–282.CrossRef
48.
Zurück zum Zitat Zhao, J., Tang, J., & Wang, K. W. (2008). Enhanced statistical damage identification using frequency-shift information with tunable piezoelectric transducer circuitry. Smart Materials and Structures, 17, 065003. Zhao, J., Tang, J., & Wang, K. W. (2008). Enhanced statistical damage identification using frequency-shift information with tunable piezoelectric transducer circuitry. Smart Materials and Structures, 17, 065003.
49.
Zurück zum Zitat Umesh, K., & Ganguli, R. (2009). Shape and vibration control of smart composite plate with matrix cracks. Smart Materials and Structures, 18, 025002. Umesh, K., & Ganguli, R. (2009). Shape and vibration control of smart composite plate with matrix cracks. Smart Materials and Structures, 18, 025002.
50.
Zurück zum Zitat Pawar, P. M., & Ganguli, R. (2005). On the effect of matrix cracks in composite helicopter rotor blades. Composites Science and Technology, 65, 581–594.CrossRef Pawar, P. M., & Ganguli, R. (2005). On the effect of matrix cracks in composite helicopter rotor blades. Composites Science and Technology, 65, 581–594.CrossRef
51.
Zurück zum Zitat Liu, S., & Chang, F. K. (1994). Matrix cracking effect on delamination growth in composite laminates induced by a spherical indenter. Journal of Composite Materials, 28(10), 940–977.CrossRef Liu, S., & Chang, F. K. (1994). Matrix cracking effect on delamination growth in composite laminates induced by a spherical indenter. Journal of Composite Materials, 28(10), 940–977.CrossRef
52.
Zurück zum Zitat Johnson, P., & Chang, F. K. (2001). Characterization of matrix crack-induced laminate failure—Part I: Experiments. Journal of Composite Materials, 35(22), 2009–2035.CrossRef Johnson, P., & Chang, F. K. (2001). Characterization of matrix crack-induced laminate failure—Part I: Experiments. Journal of Composite Materials, 35(22), 2009–2035.CrossRef
53.
Zurück zum Zitat Johnson, P., & Chang, F. K. (2001). Characterization of matrix crack-induced laminate failure—Part II: Analysis and verifications. Journal of Composite Materials, 35(22), 2037–2074. Johnson, P., & Chang, F. K. (2001). Characterization of matrix crack-induced laminate failure—Part II: Analysis and verifications. Journal of Composite Materials, 35(22), 2037–2074.
54.
Zurück zum Zitat Chandrashekhara, K., & Agarval, A. N. (1993). Active vibration control of laminated composite plates using piezoelectric devices: A finite element approach. Journal of Intelligent Material Systems and Structures, 4, 496–508.CrossRef Chandrashekhara, K., & Agarval, A. N. (1993). Active vibration control of laminated composite plates using piezoelectric devices: A finite element approach. Journal of Intelligent Material Systems and Structures, 4, 496–508.CrossRef
55.
Zurück zum Zitat Adolfsson, E., & Gudmundson, P. (1997). Thermoelastic properties in combined bending and extension of thin composite laminates with transverse matrix cracks. International Journal of Solids and Structures, 34(16), 2035–2060.MATHCrossRef Adolfsson, E., & Gudmundson, P. (1997). Thermoelastic properties in combined bending and extension of thin composite laminates with transverse matrix cracks. International Journal of Solids and Structures, 34(16), 2035–2060.MATHCrossRef
56.
Zurück zum Zitat Lam, K. Y., Peng, X. Q., Liu, G. R., & Reddy, J. N. (1997). A finite-element model for piezoelectric composite laminates. Smart Materials and Structures, 6, 583–591.CrossRef Lam, K. Y., Peng, X. Q., Liu, G. R., & Reddy, J. N. (1997). A finite-element model for piezoelectric composite laminates. Smart Materials and Structures, 6, 583–591.CrossRef
Metadaten
Titel
Damage Detection in Smart Composite Plates
verfasst von
Ranjan Ganguli
Copyright-Jahr
2020
Verlag
Springer Singapore
DOI
https://doi.org/10.1007/978-981-15-4988-5_5

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.