Skip to main content
Erschienen in: Journal of Engineering Thermophysics 2/2022

01.06.2022

Darcy–Forchheimer Nanoliquid Flow and Radiative Heat Transport over Convectively Heated Surface with Chemical Reaction

verfasst von: M. Basavarajappa, T. Muhammad, G. Lorenzini, K. Swain

Erschienen in: Journal of Engineering Thermophysics | Ausgabe 2/2022

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Improving the heat transport of energy transmission fluids is a vital challenge in numerous engineering applications such as photovoltaic thermal management, heat exchangers, transport and energy-saving processes, solar collectors, automotive refrigeration, electronic equipment refrigeration, and engine applications. Nanofluids address the challenges of thermal management in engineering applications. The Darcy–Forchheimer flow of magneto-nanofluid initiated by a stretched plate is investigated with application of the Buongiorno model. The features of the nth order chemical reaction, Rosseland thermal energy radiation, and non-uniform heat sink/source are also scrutinized. The Buongiorno nanoliquid model is implemented, which includes the frenzied motion of the nanoparticles and the thermal diffusion of the nanoparticles (NPs). Thermal and solutal convection heating boundary conditions are also incorporated. Boundary layer approximations are used in the mathematical derivation. The non-linear control problem is deciphered with application of the Runge–Kutta shooting method (RKSM). The results for the relevant parameters are analyzed in dimensionless profiles. In addition, the friction factor on the plate, the heat transport rate, and the mass transport rate of the nanoparticles are calculated and analyzed.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Choi, S.U. and Eastman, J.A., Enhancing Thermal Conductivity of Fluids with Nanoparticles, Argonne: Argonne National Lab., 1995. Choi, S.U. and Eastman, J.A., Enhancing Thermal Conductivity of Fluids with Nanoparticles, Argonne: Argonne National Lab., 1995.
2.
Zurück zum Zitat Buongiorno, J., Convective Transport in Nanofluids, J. of Heat Transfer, 2006, vol. 128, pp. 240–250.CrossRef Buongiorno, J., Convective Transport in Nanofluids, J. of Heat Transfer, 2006, vol. 128, pp. 240–250.CrossRef
3.
Zurück zum Zitat Khan, W.A. and Pop, I., Boundary-Layer Flow of a Nanofluid Past a Stretching Sheet, Int. J. Heat Mass Transfer, 2010, vol. 53, no. 11, pp. 2477–2483.CrossRef Khan, W.A. and Pop, I., Boundary-Layer Flow of a Nanofluid Past a Stretching Sheet, Int. J. Heat Mass Transfer, 2010, vol. 53, no. 11, pp. 2477–2483.CrossRef
4.
Zurück zum Zitat Makinde, O.D. and Aziz, A., Boundary Layer Flow of a Nanofluid past a Stretching Sheet with a Convective Boundary Condition, Int. J. Therm. Sci., 2011, vol. 50, no. 7, pp. 1326–1332.CrossRef Makinde, O.D. and Aziz, A., Boundary Layer Flow of a Nanofluid past a Stretching Sheet with a Convective Boundary Condition, Int. J. Therm. Sci., 2011, vol. 50, no. 7, pp. 1326–1332.CrossRef
5.
Zurück zum Zitat Makinde, O.D., Khan, W.A., and Khan, Z.H., Buoyancy Effects on MHD Stagnation Point Flow and Heat Transfer of a Nanofluid past a Convectively Heated Stretching/Shrinking Sheet, Int. J. Heat Mass Transfer, 2013, vol. 62, pp. 526–533.CrossRef Makinde, O.D., Khan, W.A., and Khan, Z.H., Buoyancy Effects on MHD Stagnation Point Flow and Heat Transfer of a Nanofluid past a Convectively Heated Stretching/Shrinking Sheet, Int. J. Heat Mass Transfer, 2013, vol. 62, pp. 526–533.CrossRef
6.
Zurück zum Zitat Ibrahim, W., Shankar, B., and Nandeppanavar, M.M., MHD Stagnation Point Flow and Heat Transfer Due to Nanofluid Towards a Stretching Sheet, Int. J. Heat Mass Transfer, 2013, vol. 5, nos. 1/2, pp. 1–9.CrossRef Ibrahim, W., Shankar, B., and Nandeppanavar, M.M., MHD Stagnation Point Flow and Heat Transfer Due to Nanofluid Towards a Stretching Sheet, Int. J. Heat Mass Transfer, 2013, vol. 5, nos. 1/2, pp. 1–9.CrossRef
7.
Zurück zum Zitat Kuznetsov, A.V. and Nield, D.A., Natural Convective Boundary-Layer Flow of a Nanofluid past a Vertical Plate: A Revised Model, Int. J. Therm. Sci., 2014, vol. 77, pp. 126–129.CrossRef Kuznetsov, A.V. and Nield, D.A., Natural Convective Boundary-Layer Flow of a Nanofluid past a Vertical Plate: A Revised Model, Int. J. Therm. Sci., 2014, vol. 77, pp. 126–129.CrossRef
8.
Zurück zum Zitat Ellahi, R., Tariq, M.H., Hassan, M., and Vafai, K., On Boundary Layer Nano-Ferroliquid Flow under the Influence of Low Oscillating Stretchable Rotating Disk, J. Molec. Liq., 2017, vol. 229, pp. 339–345.CrossRef Ellahi, R., Tariq, M.H., Hassan, M., and Vafai, K., On Boundary Layer Nano-Ferroliquid Flow under the Influence of Low Oscillating Stretchable Rotating Disk, J. Molec. Liq., 2017, vol. 229, pp. 339–345.CrossRef
9.
Zurück zum Zitat Hayat, T., Khalid, H., Waqas, M., and Alsaedi, A., Numerical Simulation for Radiative Flow of Nanoliquid by Rotating Disk with Carbon Nanotubes and Partial Slip, Computer Meth. Appl. Mech. Engin., 2018, vol. 341, pp. 397–408.MathSciNetCrossRefADS Hayat, T., Khalid, H., Waqas, M., and Alsaedi, A., Numerical Simulation for Radiative Flow of Nanoliquid by Rotating Disk with Carbon Nanotubes and Partial Slip, Computer Meth. Appl. Mech. Engin., 2018, vol. 341, pp. 397–408.MathSciNetCrossRefADS
10.
Zurück zum Zitat Waqas, M., Dogonchi, A.S., Shehzad, S.A., Khan, M.I., Hayat, T., and Alsaedi, A., Nonlinear Convection and Joule Heating Impacts in Magneto-Thixotropic Nanofluid Stratified Flow by Convectively Heated Variable Thicked Surface, J. Molec. Liq., 2020, vol. 300, p. 111945.CrossRef Waqas, M., Dogonchi, A.S., Shehzad, S.A., Khan, M.I., Hayat, T., and Alsaedi, A., Nonlinear Convection and Joule Heating Impacts in Magneto-Thixotropic Nanofluid Stratified Flow by Convectively Heated Variable Thicked Surface, J. Molec. Liq., 2020, vol. 300, p. 111945.CrossRef
11.
Zurück zum Zitat Mahanthesh, B., Shehzad, S.A., Ambreen, T., and Khan, S.U., Significance of Joule Heating and Viscous Heating on Heat Transport of MoS2–Ag Hybrid Nanofluid past an Isothermal Wedge, J. Thermal An. Calorimetry, 2021, vol. 143, pp. 1221–1229.CrossRef Mahanthesh, B., Shehzad, S.A., Ambreen, T., and Khan, S.U., Significance of Joule Heating and Viscous Heating on Heat Transport of MoS2–Ag Hybrid Nanofluid past an Isothermal Wedge, J. Thermal An. Calorimetry, 2021, vol. 143, pp. 1221–1229.CrossRef
12.
Zurück zum Zitat Mahanthesh, B., Flow and Heat Transport of Nanomaterial with Quadratic Radiative Heat Flux and Aggregation Kinematics of Nanoparticles, Int. Comm. Heat Mass Transfer, 2021, vol. 127, p. 105521.CrossRef Mahanthesh, B., Flow and Heat Transport of Nanomaterial with Quadratic Radiative Heat Flux and Aggregation Kinematics of Nanoparticles, Int. Comm. Heat Mass Transfer, 2021, vol. 127, p. 105521.CrossRef
13.
Zurück zum Zitat Anuar, N.S., Bachok, N., and Pop, I., Influence of Buoyancy Force on Ag–MgO/Water Hybrid Nanofluid Flow in an Inclined Permeable Stretching/Shrinking Sheet, Int. Comm. Heat Mass Transfer, 2021, vol. 123, p. 105236.CrossRef Anuar, N.S., Bachok, N., and Pop, I., Influence of Buoyancy Force on Ag–MgO/Water Hybrid Nanofluid Flow in an Inclined Permeable Stretching/Shrinking Sheet, Int. Comm. Heat Mass Transfer, 2021, vol. 123, p. 105236.CrossRef
14.
Zurück zum Zitat Kumar, K., Chauhan, P.R., Kumar, R., and Bharj, R.S., Irreversibility Analysis in Al2O3–Water Nanofluid Flow with Variable Property, Facta Universitatis-Series Mechanical Engineering, 2021; DOI: 10.22190/ FUME210308050K Kumar, K., Chauhan, P.R., Kumar, R., and Bharj, R.S., Irreversibility Analysis in Al2O3–Water Nanofluid Flow with Variable Property, Facta Universitatis-Series Mechanical Engineering, 2021; DOI: 10.22190/ FUME210308050K
15.
Zurück zum Zitat Lakshmi, K.M., Laroze, D., and Siddheshwar, P.G., A Study of the Natural Convection of Water-AA 7075 Nanoliquids in Low-Porosity Cylindrical Annuli Using a Local Thermal Non-Equilibrium Model, Phys. Fluids, 2021, vol. 33, no. 3, p. 032018.CrossRefADS Lakshmi, K.M., Laroze, D., and Siddheshwar, P.G., A Study of the Natural Convection of Water-AA 7075 Nanoliquids in Low-Porosity Cylindrical Annuli Using a Local Thermal Non-Equilibrium Model, Phys. Fluids, 2021, vol. 33, no. 3, p. 032018.CrossRefADS
16.
Zurück zum Zitat Nayak, M.K., Dash, G.C., and Singh, L.P., Heat and Mass Transfer Effects on MHD Viscoelastic Fluid over a Stretching Sheet through Porous Medium in Presence of Chemical Reaction, Propuls. Power Res., 2016, vol. 5, no. 1, pp. 70–80.CrossRef Nayak, M.K., Dash, G.C., and Singh, L.P., Heat and Mass Transfer Effects on MHD Viscoelastic Fluid over a Stretching Sheet through Porous Medium in Presence of Chemical Reaction, Propuls. Power Res., 2016, vol. 5, no. 1, pp. 70–80.CrossRef
17.
Zurück zum Zitat Dessie, H. and Kishan, N., MHD Effects on Heat Transfer over Stretching Sheet Embedded in Porous Medium with Variable Viscosity, Viscous Dissipation and Heat Source/Sink, Ain Shams Engin. J., 2014, vol. 5, no. 3, pp. 967–977.CrossRef Dessie, H. and Kishan, N., MHD Effects on Heat Transfer over Stretching Sheet Embedded in Porous Medium with Variable Viscosity, Viscous Dissipation and Heat Source/Sink, Ain Shams Engin. J., 2014, vol. 5, no. 3, pp. 967–977.CrossRef
18.
Zurück zum Zitat Swain, K., Parida, S.K., and Dash, G.C., MHD Heat and Mass Transfer on Stretching Sheet with Variable Fluid Properties in Porous Medium, AMSE J., Model. B, 2017, vol. 86, no. 3, pp. 706–726. Swain, K., Parida, S.K., and Dash, G.C., MHD Heat and Mass Transfer on Stretching Sheet with Variable Fluid Properties in Porous Medium, AMSE J., Model. B, 2017, vol. 86, no. 3, pp. 706–726.
19.
Zurück zum Zitat Mahdy, A. and Chamkha, A.J., Chemical Reaction and Viscous Dissipation Effects on Darcy–Forchheimer Mixed Convection in a Fluid Saturated Porous Media, Int. J. Num. Meth. Heat Fluid Flow, 2010, vol. 20, no. 8, pp. 924–940.CrossRef Mahdy, A. and Chamkha, A.J., Chemical Reaction and Viscous Dissipation Effects on Darcy–Forchheimer Mixed Convection in a Fluid Saturated Porous Media, Int. J. Num. Meth. Heat Fluid Flow, 2010, vol. 20, no. 8, pp. 924–940.CrossRef
20.
Zurück zum Zitat Makinde, O.D., Free Convection Flow with Thermal Radiation and Mass Transfer past a Moving Vertical Porous Plate, Int. Comm. Heat and Mass Transfer, 2005, vol. 32, no. 10, pp. 1411–1419.CrossRef Makinde, O.D., Free Convection Flow with Thermal Radiation and Mass Transfer past a Moving Vertical Porous Plate, Int. Comm. Heat and Mass Transfer, 2005, vol. 32, no. 10, pp. 1411–1419.CrossRef
21.
Zurück zum Zitat Golafshan, B. and Rahimi, A.B., Effects of Radiation on Mixed Convection Stagnation-Point Flow of MHD Third-Grade Nanofluid over a Vertical Stretching Sheet, J. Thermal An. Calorim., 2019, vol. 135, no. 1, pp. 533–549.CrossRef Golafshan, B. and Rahimi, A.B., Effects of Radiation on Mixed Convection Stagnation-Point Flow of MHD Third-Grade Nanofluid over a Vertical Stretching Sheet, J. Thermal An. Calorim., 2019, vol. 135, no. 1, pp. 533–549.CrossRef
22.
Zurück zum Zitat Swain, K., Parida, S.K., and Dash, G.C., Higher Order Chemical Reaction on MHD Nanofluid Flow with Slip Boundary Conditions: A Numerical Approach, Math. Model. Engin. Probl., 2019, vol. 6, no. 2, pp. 293–299.CrossRef Swain, K., Parida, S.K., and Dash, G.C., Higher Order Chemical Reaction on MHD Nanofluid Flow with Slip Boundary Conditions: A Numerical Approach, Math. Model. Engin. Probl., 2019, vol. 6, no. 2, pp. 293–299.CrossRef
23.
Zurück zum Zitat Hayat, T., Haider, F., Muhammad, T., and Alsaedi, A., Darcy–Forchheimer Flow with Cattaneo-Christov Heat Flux and Homogeneous-Heterogeneous Reactions, PLOS One, 2017, vol. 12, no. 4, p. e0174938.CrossRef Hayat, T., Haider, F., Muhammad, T., and Alsaedi, A., Darcy–Forchheimer Flow with Cattaneo-Christov Heat Flux and Homogeneous-Heterogeneous Reactions, PLOS One, 2017, vol. 12, no. 4, p. e0174938.CrossRef
24.
Zurück zum Zitat Bakar, S.A., Arifin, N.M., Nazar, R., Ali, F.M., and Pop, I., Forced Convection Boundary Layer Stagnation-Point Flow in Darcy–Forchheimer Porous Medium past a Shrinking Sheet, Front. Heat Mass Transfer, 2016, vol. 7, no. 1, pp. 38–43. Bakar, S.A., Arifin, N.M., Nazar, R., Ali, F.M., and Pop, I., Forced Convection Boundary Layer Stagnation-Point Flow in Darcy–Forchheimer Porous Medium past a Shrinking Sheet, Front. Heat Mass Transfer, 2016, vol. 7, no. 1, pp. 38–43.
25.
Zurück zum Zitat Uddin, I., Akhtar, R., Zhiyu, Z., Islam, S., Shoaib, M., and Raja, M.A.Z., Numerical Treatment for Darcy–Forchheimer Flow of Sisko Nanomaterial with Nonlinear Thermal Radiation by lobatto IIIA Technique, Math. Probl. Engin., 2019, p. 8974572.MathSciNetCrossRef Uddin, I., Akhtar, R., Zhiyu, Z., Islam, S., Shoaib, M., and Raja, M.A.Z., Numerical Treatment for Darcy–Forchheimer Flow of Sisko Nanomaterial with Nonlinear Thermal Radiation by lobatto IIIA Technique, Math. Probl. Engin., 2019, p. 8974572.MathSciNetCrossRef
26.
Zurück zum Zitat Rasool, G., Shafiq, A., Khalique, C.M., and Zhang, T., Magnetohydrodynamic Darcy–Forchheimer Nanofluid Flow over a Nonlinear Stretching Sheet, Physica Scripta, 2019, vol. 94, no. 10, p. 105221.CrossRefADS Rasool, G., Shafiq, A., Khalique, C.M., and Zhang, T., Magnetohydrodynamic Darcy–Forchheimer Nanofluid Flow over a Nonlinear Stretching Sheet, Physica Scripta, 2019, vol. 94, no. 10, p. 105221.CrossRefADS
27.
Zurück zum Zitat Muhammad, T., Lu, D.C., Mahanthesh, B., Eid, M.R., Ramzan, M., and Dar, A., Significance of Darcy–Forchheimer Porous Medium in Nanofluid through Carbon Nanotubes, Comm. Theor. Phys., 2018, vol. 70, no. 3, p. 361.MathSciNetCrossRefADS Muhammad, T., Lu, D.C., Mahanthesh, B., Eid, M.R., Ramzan, M., and Dar, A., Significance of Darcy–Forchheimer Porous Medium in Nanofluid through Carbon Nanotubes, Comm. Theor. Phys., 2018, vol. 70, no. 3, p. 361.MathSciNetCrossRefADS
28.
Zurück zum Zitat Swain, K. and Mahanthesh, B., Thermal Enhancement of Radiating Magneto-Nanoliquid with Nanoparticles Aggregation and Joule Heating: A Three-Dimensional Flow, Arabian J. Sci. Engin., 2021, vol. 46, pp. 5865–5873.CrossRef Swain, K. and Mahanthesh, B., Thermal Enhancement of Radiating Magneto-Nanoliquid with Nanoparticles Aggregation and Joule Heating: A Three-Dimensional Flow, Arabian J. Sci. Engin., 2021, vol. 46, pp. 5865–5873.CrossRef
29.
Zurück zum Zitat Wakif, A., Chamkha, A., Thumma, T., Animasaun, I.L., and Sehaqui, R., Thermal Radiation and Surface Roughness Effects on the Thermo-Magneto-Hydrodynamic Stability of Alumina–Copper Oxide Hybrid Nanofluids Utilizing the Generalized Buongiorno’s Nanofluid Model, J. Therm. An. Calorim., 2021, vol. 143, pp. 1201–1220.CrossRef Wakif, A., Chamkha, A., Thumma, T., Animasaun, I.L., and Sehaqui, R., Thermal Radiation and Surface Roughness Effects on the Thermo-Magneto-Hydrodynamic Stability of Alumina–Copper Oxide Hybrid Nanofluids Utilizing the Generalized Buongiorno’s Nanofluid Model, J. Therm. An. Calorim., 2021, vol. 143, pp. 1201–1220.CrossRef
Metadaten
Titel
Darcy–Forchheimer Nanoliquid Flow and Radiative Heat Transport over Convectively Heated Surface with Chemical Reaction
verfasst von
M. Basavarajappa
T. Muhammad
G. Lorenzini
K. Swain
Publikationsdatum
01.06.2022
Verlag
Pleiades Publishing
Erschienen in
Journal of Engineering Thermophysics / Ausgabe 2/2022
Print ISSN: 1810-2328
Elektronische ISSN: 1990-5432
DOI
https://doi.org/10.1134/S1810232822020072

Weitere Artikel der Ausgabe 2/2022

Journal of Engineering Thermophysics 2/2022 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.