Skip to main content
Erschienen in: Journal of Materials Science 12/2024

24.02.2024 | The Physics of Metal Plasticity: in honor of Professor Hussein Zbib

Dark energy in crystals: prediction of stored energy in polycrystalline aggregates

verfasst von: Vikram Phalke, Samuel Forest, Hyung-Jun Chang, Tonya Rose, Arjen Roos

Erschienen in: Journal of Materials Science | Ausgabe 12/2024

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

During the plastic deformation of metallic materials, part of expended mechanical energy diffuses as heat. The fraction of plastic work converted into heat is called the Taylor–Quinney Coefficient (TQC), which is often assumed to be a constant parameter of about 0.9. The remaining portion of the plastic work is called stored energy. The stored energy is known as the main driving force for dynamic or static recovery and recrystallization. Therefore, numerical predictions and experimental measurements of the stored energy and TQC are essential to optimize thermomechanical material processing. An adequate prediction of the stored energy and the TQC using existing crystal plasticity models in line with the experimental measurements remains a challenging problem. In this work, a thermodynamic class of crystal plasticity models is used to predict the stored energy and TQC of copper and aluminum single crystals. Then, the numerical stored energy predictions are extended to polycrystalline austenitic steel 316L and compared with the experimental measurements from the literature. An ad-hoc factor is introduced in the numerical expression of stored energy in order to compensate for the difference with the experimental measurement. To this end, the contributions of statistically stored dislocations (SSDs) and geometrically necessary dislocations (GNDs) for the stored energy prediction are analyzed to understand the physical origin of the ad-hoc factor. The contribution of GNDs to stored energy and enhanced hardening is accounted for by means of a strain gradient plasticity model. The present systematic finite element crystal plasticity simulations also include specific interface conditions at grain boundaries. The presented computational analysis indicates that, compared to the experiment, there remains dark energy in the evaluation of energy storage as predicted by the proposed thermodynamically consistent crystal plasticity framework.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Rollett A, Rohrer GS, Humphreys J (2017) Recrystallization and Related Annealing Phenomena. Elsevier, The Netherlands Rollett A, Rohrer GS, Humphreys J (2017) Recrystallization and Related Annealing Phenomena. Elsevier, The Netherlands
21.
Zurück zum Zitat Kubin LP (2013) Dislocations. Oxford University Press, UK, Mesoscale Simulations and Plastic Flow. Oxford Series on Materials Modelling Kubin LP (2013) Dislocations. Oxford University Press, UK, Mesoscale Simulations and Plastic Flow. Oxford Series on Materials Modelling
22.
Zurück zum Zitat Maugin GA (1990) Internal variables and dissipative structures. J Non-Equilib Thermodyn 15:173–192CrossRef Maugin GA (1990) Internal variables and dissipative structures. J Non-Equilib Thermodyn 15:173–192CrossRef
39.
Zurück zum Zitat Teodosiu C, Raphanel J, Tabourot L (1993) Finite element simulation of the large elastoplastic deformation of multi-crystals. In: Teodosiu C, Sidoroff F (eds) Large Plastic Deform MECAMAT’91. Balkema, Rotterdam, pp 153–158 Teodosiu C, Raphanel J, Tabourot L (1993) Finite element simulation of the large elastoplastic deformation of multi-crystals. In: Teodosiu C, Sidoroff F (eds) Large Plastic Deform MECAMAT’91. Balkema, Rotterdam, pp 153–158
40.
Zurück zum Zitat Ling C, Forest S, Besson J, Tanguy B, Latourte F (2018) A reduced micromorphic single crystal plasticity model at finite deformations. application to strain localization and void growth in ductile metals. Int J Solids Struct 134:43–69, https://doi.org/10.013 Ling C, Forest S, Besson J, Tanguy B, Latourte F (2018) A reduced micromorphic single crystal plasticity model at finite deformations. application to strain localization and void growth in ductile metals. Int J Solids Struct 134:43–69, https://​doi.​org/​10.​013
46.
Zurück zum Zitat Germain P, Son Nguyen Q, Suquet P (1983) Continuum Thermodynamics. J Appl Mech 50:1010–1020CrossRef Germain P, Son Nguyen Q, Suquet P (1983) Continuum Thermodynamics. J Appl Mech 50:1010–1020CrossRef
47.
Zurück zum Zitat Lemaitre J, Chaboche J-L (1994) Mech Solid Mater. Cambridge University Press, UK Lemaitre J, Chaboche J-L (1994) Mech Solid Mater. Cambridge University Press, UK
71.
82.
Zurück zum Zitat Bargmann S, Ekh M, Runesson K, Svendsen B (2010) Modeling of polycrystals with gradient crystal plasticity: A comparison of strategies. Philosoph Magazine 90:1263–1288CrossRef Bargmann S, Ekh M, Runesson K, Svendsen B (2010) Modeling of polycrystals with gradient crystal plasticity: A comparison of strategies. Philosoph Magazine 90:1263–1288CrossRef
Metadaten
Titel
Dark energy in crystals: prediction of stored energy in polycrystalline aggregates
verfasst von
Vikram Phalke
Samuel Forest
Hyung-Jun Chang
Tonya Rose
Arjen Roos
Publikationsdatum
24.02.2024
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 12/2024
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-024-09442-6

Weitere Artikel der Ausgabe 12/2024

Journal of Materials Science 12/2024 Zur Ausgabe

The Physics of Metal Plasticity: in honor of Professor Hussein Zbib

Micro–macro finite element modeling method for rub response in abradable coating materials

The Physics of Metal Plasticity: in honor of Professor Hussein Zbib

In situ SEM characterization of tensile behavior of nano-fibrous Al–Si and Al–Si–Sr eutectics

The Physics of Metal Plasticity: in honor of Professor Hussein Zbib

Modeling dislocation interactions with grain boundaries in lath martensitic steels

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.