Skip to main content
Erschienen in: Journal of Big Data 1/2022

Open Access 01.12.2022 | Survey

Data analytics for crop management: a big data view

verfasst von: Nabila Chergui, Mohand Tahar Kechadi

Erschienen in: Journal of Big Data | Ausgabe 1/2022

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Recent advances in Information and Communication Technologies have a significant impact on all sectors of the economy worldwide. Digital Agriculture appeared as a consequence of the democratisation of digital devices and advances in artificial intelligence and data science. Digital agriculture created new processes for making farming more productive and efficient while respecting the environment. Recent and sophisticated digital devices and data science allowed the collection and analysis of vast amounts of agricultural datasets to help farmers, agronomists, and professionals understand better farming tasks and make better decisions. In this paper, we present a systematic review of the application of data mining techniques to digital agriculture. We introduce the crop yield management process and its components while limiting this study to crop yield and monitoring. After identifying the main categories of data mining techniques for crop yield monitoring, we discuss a panoply of existing works on the use of data analytics. This is followed by a general analysis and discussion on the impact of big data on agriculture.
Hinweise

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Abkürzungen
ANN
Artificial Neural Network
BC
Bayesian classifier
CNN
Convolution Neural Network
DT
Decision tree
DMZ
Delineation of management zones
DNN
Deep Neural Network
ELM
Extreme learning machine
EVI
Enhanced Vegetation Index
FCM
Fuzzy C-means
GIS
Geographical information system
GPS
Global positioning system
INS
Inertial navigation system
KNN
K-Nearest Neighbour
LSTM
Long/Short Term Memory Network
KNN
K-Nearest Neighbour
MLP
Multi-layer perceptron
MODIS
Moderate-resolution imaging spectro-radiometer
NDVI
Normalised difference vegetation index
OSAVI
Optimised soil adjusted vegetation index
RF
Random forest
RBF
Radial basis function
RGB
RedGreenBlue
RNN
Recurrent neural network
RVI
Ratio Vegetation Index
SVM
Support vector machine
SVI
Spectral vegetation index
SVR
Support vector regression
UAV
Unmanned aerial vehicle
UGV
Unmanned ground vehicles
WDRVI
Weighted dynamic ranged vegetation index

Introduction

DA, (also called digital farming or smart farming)1 [78, 105, 130], is a modern approach that uses digital and smart devices [sensors, cameras, satellite, drones, the Global Positioning System (GPS)] in conjunction with Data Mining (or data analytics) to improve productivity and to optimise the use of resources. Digital Agriculture (DA) comes as a response to the increasing demand for improving productivity while reducing farming operational costs. Moreover, the improvement of productivity should not be done at any cost, e.g., overuse of natural resources and chemical products. DA can, for example, manage crop growth by finding appropriate fertilisation program for each farming field and can help farmers to reduce their operational costs and respect the environment by refining their farming operations based on the needs of each part of the farming field.
Since agriculture has a direct and significant impact on the population and therefore its economic environment, DA in its turn should be viewed as the next natural step to respond to the world population’s needs while protecting the environment, by taking advantage of the recent technological advances in digital devices, communications systems, and artificial intelligence. These allow us to construct multidimensional domains, where the farms and farmers are their central subjects. Figure 1 shows the agriculture ecosystem and its direct impact on other sectors of the economy.
Besides, since DA involves the development, adoption and iteration with digital technologies [39], and Artificial Intelligence (data analytics, ...), these developments and interactions should be well-defined (laws, regulations and policies) to guarantee rights and benefits of all the involved actors (farmers, farm holders’, data owners’, developers and analysts, technology vendors’,...) [70, 77, 78, 92, 113, 146].
DA can be regarded as a data driven form of farming, in which decision-making processes are based on explicit information derived from data collected through various sources [148]. DA and Precision Agriculture (PA) seem to refer to the same thing, however, as stated in [148], DA involves the development and adoption of modern technologies in both collecting the data and its analysis in various farming contexts, while PA takes into account only the in-field variability [147]. DA aims to exploit advanced digital devices, ranging from a simple sensor to complex robots, to offer the required farmland treatment with high accuracy. DA can be applied in almost all agricultural fields. For instance, in crop production: DA allows accurate management of crops, which includes fields, wasteland, crop, pest, and irrigation management, soil classification, etc. In Animal production: DA allows monitoring the animal over its whole life cycle, its food quantity, health control and protection from diseases, and so on. Fishery, animal Husbandry, livestock and dairy farming are some examples [14]. In Forestry: We can efficiently manage forests by supporting the environmental and sustainable decision [36]. DA can help in detecting unhealthy trees, air pollution, discriminate different tree species, protect the wildlife, etc. From the economy point of view, the application of DA for forest management enhances the wood quality and its production, which can augment profits; reduce waste and maintain the environment [138].
Addressing DA from all the above mentioned views is a challenging task and cannot be achieved without the participation of specialists from all these sectors. In this study, we focus on the use of Big Data in crop management, it is, not only one of the pillars in agriculture but also it can profoundly affect biodiversity. Moreover, crop growth is a very complex process involving various endogenous and exogenous factors. Recent advances in digital technologies allow us to collect data about all these factors. DA has the ability to elucidate the correlations and interactions of these factor to help farmers and agronomists optimise the productivity while reducing the side effects on the environment. DA exhibits several benefits to agriculture as shown in Figure  2. These benefits were discussed in [10, 13, 70, 98, 104, 112, 113, 130, 135, 148] and summarised in the following:
  • DA provides a farmer with useful information to support their decision-making processes, such as soil and weather monitoring and prediction, weed and pest monitoring, crop yield dynamic predictions, etc.
  • DA can sustain the environment and improve the products’ quality, since it provides high quality information and measurements for optimal farming operations on each field.
  • DA can provide farmers advanced management methods against climate change and other environmental challenges. The farmer can continuously monitor crop growth and protect them against diseases.
  • DA offers valuable feedback to farmers and good assessment of risks, to minimise microbiological or disaster-related risks.
  • DA can provide prediction and assistance to farmers against adverse weather incidence, disasters and market instability by assessing the loss at the farm level.
  • Farmers/agronomists can benefit from advanced models to understand the market and forecast which products could be more profitable.
The contributions of this study are in the investigation of big data analytics applications to crop production. Crop farming is a complex task, and it depends on many factors that should be taken into account. To optimise the operational cost and reduce the impact on the environment, the big data analytics emerges as one of the most cost effective approaches nowadays. The contributions, therefore, include the following:
  • A comprehensive overview of Digital Agriculture big-data with a presentation of the conceptual-layered framework to show the effectiveness of data analytics on Digital Agriculture, when some necessary steps have been implemented. For instance, large-scale data analytics can only be effective if the historical data is available, carefully collected, and it is of high quality.
  • A highlight of the different types of data used in the existing studies, and a presentation of the classification of different techniques applied to crop yield monitoring and their effectiveness of the overall results.
  • A review and analytical studies of the most widely used data mining techniques to crop farming, with a report of their advantages and shortcomings.
  • A discussion on the advantages of big data in agriculture, and how this can be used efficiently for crop farming and its extension to the agricultural field in general.
  • A discussion on Digital Agriculture applications for crop management in small and large scale holders.
  • A discussion on Digital Agriculture challenges and potential paths for future research.

Methodology

To study the impact of data analytics and big data on DA based on previous works, we conducted a systematic review approach that consists of three steps: (1) collection of related work, (2) selection of relevant work, and (3) examination and analysis of the filtered related work.
In the first step, we performed keyword-based research and We gathered a large number of studies from well-known and popular online sources (Web of Science, Scopus, IEEEXplore, ACM, etc.). We used a combination of keywords from the two sets (Big data, data mining, data analytics, machine learning, Internet Of Things, sensors) and (Digital agriculture, smart farming, precision agriculture, agriculture, farming). We gathered more than 327 articles. In the next steps, We selected a small number of articles, which are considered relevant for further analysis, based on their ideas, methods, data types and sources, addressed problems, proposed solutions, tools used and quality of the results.
Through the literature analysis, the study aims to find responses to the following research questions and discuss findings in the following sections.
  • What is the process of DA for crop management?
  • What are the various data types generated by farms and used in DA applications for crop management?
  • What role does big data analytics play in DA?
  • How are big data analytics used for crop management?
  • What are the influences of the farm’s scale on the application of DA?
  • How big is the data used in the proposed DA solutions’?
  • What are the challenges facing the DA?
Figure 3 summarises the overall approach, adopted from the PRISMA2 flow diagram.
Despite that DA and Big Data being relatively recent research fields, their scientific literature is rich and covers several concepts. As DA is at the cross boundaries between agriculture and ICT, three major dimensions have emerged as of a very high importance; technology, social economics and ethics, and decision-making based on Machine Learning. The first dimension focuses on the use of advanced technologies to improve practices and productivity [56, 124]. In Ref. [124], the authors studied the impact of sensor networks in agriculture, including remote sensing technologies, wireless devices, and other IoT devices. Ref. [56] reviewed some developments in remote sensing within Big Data processing and management in agriculture. The second dimension concerns legal, ethics, social and economic factors of DA, to provide insights into the impact of digitised information and its analysis on the farm management; farmer identity, skills, privacy, production, and value chains in food systems [39, 70, 77, 78, 92, 113, 146, 148]. The third dimension focuses on the application of big data analysis and machine learning (ML), to optimise and forecast the production and the use of resources. In this paper, we only consider this dimension.
Various studies have been conducted on the application of data analytics to crop yield management. For instance, [71] presented a systematic review on crop yield prediction using ML techniques, and extracted major ML algorithms, features and evaluation metrics used in those studies. Ref.[35] discussed the yield estimation by integrating agrarian factors in ML techniques. This allowed them to show a strong relationship between crop yield and climatic factors. Ref. [103] Provided a systematic review on the use of computer vision and AI to enhance the grain quality of five crops (maize, rice, wheat, soybean and barley), disease detection and phenotyping. Ref. [64] reviewed the application of big data analysis in some fields of agriculture. It highlighted solutions to some key well-known problems, used tools and algorithms, along with input datasets. The authors concluded that big data analytics in agriculture is still at its early stage, and many barriers need to be overcome, despite the availability of the data and tools to analyse it. To measure the level of usage of big data in DA, the authors defined big data metrics (low, medium, high) for each of its dimensions (volume, velocity, and variety). However, while it is a very simple model, it is not easy to specify thresholds, as some dimensions, such as volume and velocity depend on technological advances. Ref. [12] presented a review on the use of ML methods to detect biotic stress in crop protection. The authors analysed the potential of these techniques and their suitability to deal with crop protection from weeds, diseases and insects. In addition, they provided very good instructive examples from different fields of DA. An earlier similar study was presented in [89], where the authors studied four very popular learning approaches; Artificial Neural Network (ANN), Support Vector Machine (SVM), K-means, and K-Nearest Neighbour (KNN). Ref. [25] presented a survey on data mining clustering methods applied to food and agricultural domains. It first described major techniques of unsupervised classification, then it examined some existing techniques applied to agriculture products; like fruit classification, wine classification, analysis of remote sensing in forest images and machine vision.
This study is not just an update of previous surveys. The main objective is to examine the effectiveness of big data analytics in crop yield monitoring and discuss the challenges of such paradigm shift in the agriculture domain. Moreover, It is important to understand the sources of datasets, their types, and which ML techniques are more suitable to analyse them.

DA: it’s all about data

Digital Agriculture (DA) relies heavily on the data sources and techniques used to collect it. This data is then organised in agricultural data warehouses and analysed [93]. The results of this data analysis provide significant insights to farmers and agronomists about how to improve the production, minimise the farming operational costs, manage risks, and protect the environment. The process of deploying DA is derived from data science.

Digital agriculture process

Figure  4, adopted from the knowledge pyramid DIKW, shows a data-driven process, which is at the heart of DA. This usually shows how data from past experiences and models serve as input to techniques of mining and analysis to help in future decisions and acting accordingly. The newly collected data will be used to further refine the process and adapt it to an ever-evolving agricultural world.
This is a data-driven methodology derived from the overall knowledge discovery process. The first phase, data collection, is crucial to the validity of the whole analysis. One needs to carefully identify the type of data that should be collected and the approach of gathering it and maintain it through its whole life cycle. This is even more complex in DA, as the data is issued from various and heterogeneous sources, and contains a number of factors of uncertainties. The second phase, data representation and analysis, is very sophisticated, as there is no common standards in the way the data should be integrated, consolidated, to derive a unified representation that is suitable for its analysis, and in the choice of the analysis techniques. Finally, the decision-making is a laborious task, where the extracted knowledge will be associated to the expertise of farmers and agronomists, farming constraints and regulations to derive new management processes with the view to improve productivity and quality of products, reduce and their impact on the environment. Figure  5 depicts a diagram presenting the DA process for crop yield monitoring, as explained below.
  • Data collection and preparation It is important to identify the data types and attributes based on the problem at hand (e.g., crop management), and the level of granularity of the data. The required data sources should also be identified and assessed for their data quality. As mentioned above, the data is then prepared for analysis. This includes data integration, representation, selection, transformation, etc.
  • Data analysis the complex nature of the agricultural data requires an elaborative analysis approach, ranging from methods of feature selection or extraction to various learning algorithms to discover models, patterns (or knowledge in general term) for data analysis. These will be evaluated against the expected quality of results and their suitability to a decision-making process.
  • Decision-making The main goal of the DA process is the decision-making. Any decision should follow the state-of-the-art practice, be justifiable and scientifically sound.

Digital agriculture data

In agriculture, Very large amounts of data can be collected from various sources. These include sensors, weather stations, satellite imagery, drone imagery, and many other instruments. The datasets include weather data, farm records, environmental conditions, soil parameters (nutrients, texture, moisture, and so on. The data is usually rich, large, very complex, and heterogeneous. Therefore, its analysis is not straightforward.
The heterogeneity is not only expressed by the data types and formats, but it can be collected using different equipment of different quality. In addition, historical data may be described with different sets of attributes compared to very recent data. This can present inconsistencies in naming conventions and measures when the data is collected from different locations and times. Moreover, the data can be static and historical, which is considered as offline data, and can be online weather data collected at regular intervals (streams of data values), such as weather data (e.g., every 15 minutes), satellite imagery, which is characterised of being spatio-temporal, such as Geo-spatial data, Moderate-Resolution Imaging Spectroradiometer (MODIS) images, etc.
As mentioned earlier, the data collection is not well tackled in the literature. Most of the studies assume that the data is known already, and the experimental setup was already in place. Therefore, more effort is allocated to the data analysis and interpretation rather than on the complete environmental parameters and conditions. In the following sections, we discuss the data analysis process. This discussion is structured based on the main categories of the data analysis; classification, and clustering [24]. Note that, for high quality results, the data needs to be pre-processed, as discussed in the previous section. The pre-processing includes cleaning (dealing with missing values, redundant data, noise and outliers), data transformation, dimensionality or data reduction, and so on.

Classification for crop monitoring

Big Data analytics system architecture is depicted in Fig.  5. While this system is targeted specifically to crop yield management, it can be adapted to any data-driven application. This architecture implements faithfully what we have highlighted in the previous sections. In this section, we will focus on the data analysis layer of the architecture, moreover, we will pay attention to the data types and their sources, techniques of data acquisition, the learning algorithms. The main objective of the crop management data analysis is to get some insights about the crop monitoring problems and show the potential of DA through big data analytics, also called data mining. Data mining and its techniques are involved in several roles in crop production. Farmers may want to know the future yield of their crop, specific areas of their farms suffer from the spread of weeds or under-nutrition. Researchers can look for information such as plant growth patterns, optimum growing conditions, best pest and disease control environment and so on. Data mining offers panoply of sophisticated techniques required to meet all of these needs.
There are two major categories of data analysis: Classification and Clustering. In the work of [24], authors studied applications of data mining techniques in crop management and proposed a classification of these applications. They found that the classification and clustering are the main used categories, where the classification includes prediction, detection, protection, and categorisation). The choice between classification or clustering analysis is very simple. If the models or classes we are looking for were known in advance and we have an annotated data to support the training of the learning algorithms, then classification is the right choice. However, the annotated data is not always available and easy to generate, and in many cases we do not know even which models or patterns we are looking for. In these situations, clustering analysis is the right alternative.
In this section, we focus on the studies that use classification methods for their data analysis. Clustering analysis will be covered in the next section. We structure these classification studies based on the application objectives or targets which arecategorisation, prediction, detection, and protection.

Categorisation

While the classification main objective is to assign a given object into one of the predetermined classes, in the agricultural world, the use of classification process may vary depending on the stakeholders interests. In this study, we report four different applications (or targets) which are widely used in agriculture categorisation, prediction, detection, and protection.
Categorisation aims at defining the classes (or class labels) based on the simple recognition of similarities that exist across a set of entities. For example, categorisation can be used to classify small fruit from fruit with normal to big size, to make an estimation of yields; which may have an economic impact if the farmer wants to make different packages or prices for each type of fruit separately. It can also be used to classify damaged crops from good ones in order to estimate losses, or to prepare for the harvest and marketing. Categorisation can also be applied for crop mapping (e.g., poor, average, high yield), which aims to provide information on farmed fields given a specific type of crops, or to identify a type of crops that are more suitable for a particular field. Based on the input data, categorisation can help improve the farming operations based on the meaningful categories (classes) predefined in advance.
Producing accurate crop maps is essential for effective agricultural monitoring [131]. Categorisation approaches can be applied to study regional crop distribution within or post growing season. For this purpose, it can offer:
  • A good understanding of how crops are distributed at early stage of their development; allowing for an opportune decision making and management, as well as adjusting crop planting structure, is crucial. Besides, the timely available of (spatial or maps) distribution of crop types is required for statistical and economic purposes [131].
  • The availability of crops maps is critical for the diverse agricultural monitoring activities, such as crop acreage estimation, yield modelling, harvest operation schedules [131, 144], etc.
Moreover, categorisation has been applied for agricultural field mapping [31], to quantify the cropping intensity for small-scale farms [58], to identify and map crops and to retrieve the area of major cultivation [100] and to classify land-cover and crop [76]. Table  1 highlights the major fields, ideas and tools used for crops categorisation. We can see that data issued from satellites and remote sensing, and the features with vegetation indices especially NDVI and EVI, the RGB colours, are the most used.
Table 1
An analytical study on examples of crop categorisation approaches; demonstrates: the type of categorisation application, the used learning algorithm, the data type, data pre-processing and selected features for each algorithm
References
Application
Algo
Target
Data type
Data pre-processing
Extracted features
[31]
Crop fieldsmapping
RF
/
SatelliteDigitalGlobe Worldview-2
Hand digitisation
Randomised Quasi-Exhaustive features
[41]
Crop mapping
Decision tree
Soybean
Satellite
Multi resolutionsegmentation
NDVI NIR (near infrared) SWIR (short wave infrared)
[131]
Crops mapping
RF
/
GF-1 WFV sensorsatellite images
Multi-resolutionsegmentation
temporal, spectral textural features vegetation indexes(NDVI, EVI...)
[22]
Crop fieldsmapping
RF
Paddy rice
Satellite images
Polarisation for cloud contamination by Google Earth Engine
NDVI, EVIland surface water index LSWI
[115]
Crop mapping
Deep learning: autoencoder CNN, Full CNN
Soybean, maize cotton
Satellite images
Data were pre-processed
Texturepixel’s features based on the image patch
[157]
Crop classification
LSTM
/
Satellite & opticalimagesfield surveys
Segmentaionpan-sharpening and mosaic of optical imagesthermal noise removal and radiometric correction
Spatial features
[76]
Crop classification
Deep learning CNN
Wheat, maize sunflower soybeans, sugar beet
Satellite images
segmentation and data restoration using unsupervised NN self-organising Kohonen maps)
Spectral and spatial features
[33]
Plant classification
Deep learningCNN
22 plants
Camera and cell phone images
Data are not pre-processed
Self-learned features
[26]
Crop classification
Ensemble learningANN, DT, SVM
Rice, soybean, corn cotton
Remote sensing images
USGS online system, used a cubic convolution 245 re-sampling and a standard terrain correction incorporating ground truth points
NDVI, levels of greenmoisture
[100]
Crop classification
set of classifiers SVM(RBF kernel), RF, Spectral Angle Mapper
Tree crops, sugar beet alfalfa, cereals
Sensor satellite Time series and images
Atmospheric correction and Radiometric calibration and Pan-Sharpening
NDVI

Crop yield prediction

The estimation of crop yield is crucial in DA, as it enables efficient planning of resources. Economically, an early and accurate prediction of yields can help decision-makers to react to the crops market. Moreover, crop yield prediction permits the study of factors that influence and affect the production, such as climate and weather, natural soil fertility and its physical structure and topography, crop stress, the incidence of pests and diseases, etc.
The prediction of crop yields has been the subject of many studies. Ref. [71] presented a literature review on crop forecasting, where the authors highlighted the most used machine learning algorithms along with the applied metrics and measures. In this section, we examine the learning algorithms that have been used in crop yield prediction from different views: data types, the pre-processing methods, and features or the predictor variables used in each study. Tables  2 and  3 summarise some relevant studies.
The crop yield forecasting approaches follow two major types of sources of data. The first type is related to the sources that have direct impact on the crops. These sources are soil data, weather data, environmental parameter data. These are usually used to predict crop yield [27, 34, 42, 46, 51, 73]. The second type of sources are the use of advanced technologies and tools like satellite multi/hyper spectral images, remote sensing and sensors to collect the data [62, 83, 102, 114, 152]. Some advanced studies use both types of data sources [1, 40, 54, 59, 65, 67, 68, 97, 120, 121].
The forecasting models based on the first type of data sources provides a pre-season estimation of the yield, even before the beginning of the crop season. This allows farmers to decide which strategy to both optimise the farming operations and crop production. These decisions include choosing seeds and crop type, type of fertiliser and its applications. Moreover, This data can also be used for some crop monitoring during the growing season.
The monitoring systems based on the second type of data analysis - data imagery obtained from satellite, cameras, scanner, sensors - allow for on-season estimation (emergence, detect stress conditions of crop, harvest dates, ...). These models are complex since they have to analyse the data that consists of both spatio-temporal and non-spacial. While the spatial data is of high resolution, some images can be of very poor quality, (e.g., images with lot of clouds). Features or predictor variables used in this kind of applications depend on the type of data sources, NDVI and EVI are the most used vegetation indices for satellite and remote/approximate sensors’ data source, min/max temperature and precipitation for weather data source, soil moisture and nitrogen fertiliser for soil based data source.
Table 2
Part 1: an analytical study on examples of crop prediction methods; highlights: the applied learning algorithms, the crop type, data type and pre-processing, the other studied and considered parameters in each proposed approach and the predictor variables for each used algorithm
References
Algorithm
Plant
Data type
Data pre-processing
Other parameters
Predictor variables
[46]
KNN, MLP, SVR regression trees
Pepper, bean chickpea, corn potato, tomatoMexican husk tomato
Historical yield climateirrigation plans
/
/
Planting area min, max and avg temperature precipitation, irrigation solor radiation
[51]
RF
Groundnut millet
Historicalyield
KNN for dataimputation
/
Sunlight, humidity precipitation min, max, avg temperature
[54]
SVM, RF Gaussian process regression
Winter wheat
Remote sensing climate, soil yield,crop map
Google earth engine (GEE)
Regional differences of yieldvariable importance
Min, max temperature NDVI, EVI palmer drought severity index, precipitation soil: moisture, physical and chemical properties
[121]
LSTM
Soybean
Satellite imageswheather and historicalyield
GEE
/
NDVI, EVI, land surface and air temperature precipitation
[120]
RF
Corn, soybean
Historical yield satellite remote sensors ancillary and environment
/
/
Dynamic ranged vegetation index (WDRVI), temperature precipitation, soil moisture shortwave radiation statistics related to county-level irrigated harvested cropland
[83]
DNN
Soybean
Multi remote sensing data
Pix4D mapper softwrare: UAl RGB, multi spectral andTIR imagesconversion of radiometric value
/
25 features: canopy spectral structure, thermal and texture features NIR, NDVI, WDRVI, EVI
[1]
SVR
Potato
proximal sensing (soil and crop properties) yield data
Effects of data-set size on accuracy
/
Soil electrical conductivity soil moisture, soil slope, soil chemistryNDVI
[65]
SVR
Wheat
Satellite images climate and yield records and maps
KNN
/
NDVI, precipitation max temperature
[40]
RF
Wheat, barley canola
Yield, soil, climate remote sensing Geo-physical data
/
Pre-sowing mid and late season
Soil maps, surveys rainfull, NDVI
[42]
RF
Mango
Irrigation, historical yield
/
Different irrigation regimes
/
[34]
ANN
Tomato
Historical data
/
Water monitoring different radiations values
CO2, day, water radiation, temperature
[97]
RNN
Soybean maize
Multi sources: satellite, soil properties
/
Pre-season yield
Min and max temperature precipitation soil, pH and other 10 features
[59]
RF
Wheat, maize potato
Multi sources: climate, soil photo-period water, yields fertilisation
/
Climate and biophysical variables at global and regional scales
Many features on climate and soil and nitrogen fertiliser
[73]
ELM
Robusta coffee
Soil components
/
Soil fertility
Exchangeable calcium boron, magnesium and nitrogen, PH
Zinc potassium, sulphur phosphorus
[102]
ANN supervised kohonen counter propagation XY-fusion
Wheat
Multi-spectral satellite data
Orthorectification in-band reflectance calibration
Physico-chemical soil parameters
NDVI
[114]
non-linear regression
Cabbage
Sensor data
/
Nitrogen variation
NDVI
Table 3
Part 2: an analytical study on examples of crop prediction methods; highlights: the applied learning algorithms, the crop type, data type and pre-processing, the other studied and considered parameters in each proposed approach and the predictor variables for each used algorithm
References
Algorithm
Plant
Data type
Data pre/processing
Other parameters
Predictor variables
[152]
CNN, LSTM Gaussian
Soybean
Sensor MODIS data
Transform multi-spectral images to individual histograms
/
Histogramsgeographic location year
[62]
Regression Rulequest Cubist
Corn, soybean
Satellite data
8-days periods data-points composed then averaged
Pre and within season
NDVI, precipitation day and night land surface temperature
[67]
DT (Extremely randomised) SVM(RBF);DNN
Corn
Satellite images climate, yield
/
Seasonal sensitivities
NDVI and many other features
[27]
Deep learning semi-parametric NN for training: bayesian hyper-parameter optimisation and early stopping
Corn
Historical yield weather
/
Climate change impact and semi-parametric prediction model
Precipitation temperature humidity, wind radiation Latitude and longitude Growing degree, soil County, irrigation
[68]
DNN; ANN; RF; multivariate adaptive regression splines SVM; extremely randomised trees
Corn and soybean
Satellite images MODIS historical yield meteorological and crop landhydrological
/
Effect of phenology
EVI Leaf Area Index Gross Primary Production precipitation; min, max air temperature soil Moisture, NDVI
[50]
SVM
Rice
Climate and geographical data
/
Effect of phenology and climate pre-season
Mean, max, mintemperature Daily Sunshine hours precipitation mean relative humidity min relative humidity mean wind speed maximum wind speed
[60]
LR
Corn
MODIS remote sensing
Savitzky-Golay filter for smoothing NDVI time series
Effect of phenology
Max correlation NDVI crop growth rate crop growth days
[111]
RF
Chickpea
Modis images weather data yield statistics remote sensing
/
Drylands sensitivity to data time
EVI, NDVI, Leaf Area Index precipitation and 5 other features
[4]
Bidirectional LSTM
Tomato, Potato
Climate datairrigation scheduling soil water content
Moving average method for data imputation multi-collinear parametersremoval
Effect of irrigation scheduling
Min, max, mean temperature min, max, average relative humidity average solar radiation min and average wind speed precipitation
[91]
3D-CNN
Wheat, Barley, Oats
Weather data UAV RGB image yield data
Images resizing
Effects of time:efficiency of using time series data vs point-in-time data
RGB Images, cumulative temperature
[19]
LSTM
Winter, wheat
Climate satellite data soil surveys
/
/
Min and max temperatureprecipitation, EVI, soil depth and texture, pH geographic properties

Crop protection

Crop disease is considered as a major menace for food security in many regions of the world since it causes serious crops losses. While the detection of crop diseases correctly and timely when they first appear is crucial in crop monitoring, this remains a difficult task. One of the solutions to deal with this issue is to use data analytics approach. This will reduce yield losses and prevent farmers to take effective reactive actions. Forewarning can be seen as the outputs of data mining process. Usually, this consists of examining the features of a newly presented case and assigning it to a predefined class.
Several interesting efforts have been developed to prevent crops losses due to diseases, Tables  4 and 5 summarise some major studies. Ref. [7] presented an overview of ML techniques for crop disease classification. In addition, it presented to a case study where a deep learning algorithm was successfully used. Ref. [45] provided a review on advanced ANN techniques to process hyper-spectral data for plant disease detection. Recently, deep learning approaches have been emerged and widely used for plant disease detection and classification, with a variety of network architectures (CNN, AlexNet, googLeNet, CaffeNet, DenseNet, Inception, LeNet, VGGNet,...) and training methods (shallow, deep, from scratch) [9, 16, 21, 28, 38, 63, 79, 82, 125, 139, 143, 150, 155]. Moreover, [127] presented an interesting study on the potential of the use of deep learning for plant stress phenotyping.
Crop protection, that consists of disease, stress, and weed detection, aims to offer tools that detect plants disease caused by various biotic (pathogen, insect, pest, and weed) or abiotic (temperature stress, nutrient deficiency, toxicity, herbicide) variables [126]. The earlier the stress, disease or their symptoms are detected, the greater the chance of reducing the disease spread within a field. This has gained significant advantage from the advances in image collection and processing and their analysis using ML algorithm. The state-of-the-art is very rich. The large majority of studies carried out so far were using image processing, consequently image-based data and classification techniques. These are capable of detecting disease at the scale of leaf, canopy or field [126].
Disease detection at a leaf level uses images collected using digital cameras, which are stored in data warehouses. For instance, PlantVillage database [6, 9, 21, 28, 63, 79, 88, 106, 125, 129, 150] is created for this purpose. The objective of this repository is to build classifiers with high accuracy. The basic classifiers can simply assign to an unseen image a label healthy or infected, while more elaborated classifiers can identify the disease - in other words, classify unseen images to disease classes. However, this approach has some limitations. First, it depends on the quality of the images, as when taken in natural environment, these images are subject to different degrees of light, shadow, dust and leaves overlapping and requires sophisticated image processing, which is not an easy task. Second, usually the datasets sizes are small, which affect the learning phase of the classifiers and more importantly the potential of some advanced learning algorithms such as deep learning. Data augmentation (rotation, light shade’s variation, colour inversion, translation and changes in intensity and so on) is one of the methods used to overcome this problem to artificially increase the number of images [6, 9, 21, 63, 79, 129, 150], but it does not always work. Transfer learning is another solution to scarce/small data-set, where the knowledge obtained from solving a task in a given domain is transferred to the target domain in which the dataset is small [6, 11, 28]. The transfer learning can only be efficient if the source and target domains share some similarities in terms of diseases and their symptoms, for example. Moreover, it is very challenging to transfer knowledge from representations learned using RGB images to a target task using multi-spectral images from UAV or satellite [126].
Third, this approach cannot detect more than a single disease at a time, and the detection of diseases if the symptoms are manifested in another area than leaves. Plant canopy based-image was proposed as a solution to this problem. The idea is to collect data relative to disease in situations where single-leaf phenotypes alone would not provide sufficient information. Such features include the size, the height, the structure, and branching of canopy [126]. The canopy-based detection uses UAV equipped with (multi/ hyper) spectral cameras and sensors to collect the data [32, 49, 80, 82, 136, 143, 153, 155]. Then data needs to be processed to extract features which are usually related to vegetation indices like NDVI and EVI or colours like RGB and NIR. The benefit from UAV images comes with cost on complexity of analysis since images taken by UAV are susceptible to occlusion, overlapping, and atmospheric effects. Also, UAV is not able to fly at higher altitudes, which decreases the quality of the collected images. To cover larger zones and fields, satellite-based remote sensing and images has been proposed as a very good alternative [15, 81, 109, 156]. However, the problem with satellite remote sensing is the revisit time, which is 16 days on average, which makes protection applications difficult, and some diseases can spread rapidly in fields before they are detected. Moreover, passive sensors cannot penetrate clouds [149]. The integration of these data with additional data sources like field surveys, contextual information of field and crop rotation can improve the accuracy [15, 81, 109].
Detecting diseases only from one data source based on digital images or sensor data is not sufficient. Besides, variations in symptoms may lead to false positives due to dynamic nature of plant changes [126]. Consequently, the appearance-based identification of diseases is not reliable enough to accurately detect unhealthy plants, especially in the early growth stages. The use of multi-data sources can improve the accuracy of the detection. For instance, the use of physiological features and morphological characteristics (growth attributes, yield-related features, soil) [66], or the employment of satellite-based images and canopy-based images [156], where the disease can be identified at the plant canopy level and at the field level.
Table 4
Part 1: an analytical study on examples of crop diseases protection and weeds detection approaches; highlights the applied algorithm, plant and data type, data pre-processing and the extracted features
References
Application
Algorithm
Plant
Data type
Data pre-processing
Extracted features
[21]
Leaf disease recognition
CNN
Tea plant
Digital images
Data augmentation
/
[63]
Plant disease detection
CNN
Plant leaves
Digital images
Data augmentation
/
[9]
Plant disease detection
DNN
Plant leaves
Digital images
Data augmentation
 
[143]
Light leaf spotdetection
SVM
Soilseedrape
Multi-spectralimages
Removal of:background and redundant features
Carter Index 1 light leaf spot index Spectral signature
[82]
Disease detection
SVM
Wheat
Sensing data
/
NDVI, Photochemical reflection index Pigment-specific simple ratio, water index
[155]
Diseasedetection
CNN
Wheat
Remote sensingdata
Segmentaion: sliding-window
3D blocks
[125]
Leaf disease recognition
CNN
Maize
Digital images
/
RGB
[15]
Plant disease detection
Gated recurrent unit CNN
Soybean
Satellite images Crop rotation
Time-series
Spectral bands of: red, green, blue NIR, NDVI
[150]
Leaf disease detection
CNN
Tomato
Digital images
Data augmentation:resolution reducingbicubic method to enlarge images
Patches
[136]
Plant disease detection
RF
Wheat
Aerial multi-spectralimages
/
RVI, NDVI, OSAVI NIR, Red
[49]
Plant disease detection
Partial leastsquares regression
Wheat
Aerial hyper-spectralimages
Image fusion and mosaicking
Disease index many vegetation indexes texture features
[153]
Plant detection
CNN
Maize
Aerial RGBimages
Segmentation by RF
Morphological caracteristics of maize tassels
[80]
Plant disease detection
ANN
Wheat
Hyper-spectral aerial images
Fusion and stitchingradiometric calibrationatmospheric correction
11 Vegetation indexes spectral bands texture features
[88]
Plant disease detection
deep learning CNN: AlexNet GoogLeNet
Plant leaves
Digital images
Coloured, gray-scaled, segmented
/
[2]
Crop and weed classification
SVM RBF kernel
Chilli, Pigweed Marsh herb Lamb’s quarters Cogongrass, cucumber
Digital images
Segmentation: binarisation technique: -global threshold noise removal morphological opening and morphological closing
14 features: RGB colours, shape features Moment invariant features
[44]
Weeds detection
RF
Maize
Hyper-spectral images
Segmentation
185 features Ratio Vegetation Index,NDVI
[3]
Weeds detection
SVM Gaussian kernel
Corn leaves and broad silver beet leaves
Spectral reflectance images
/
NDVI
[8]
Crop and weed classification
ANN Generalised Softmax Perceptron and the Posterior Probability Model Selection algorithm
Sunflower
Digital images
Special process of segmentation
13 morphological features: Number of boundary pixelsCompactness, Perimeter, Centroid and Elongation,The geometric centre Area, Number of pixels of objects, Major and minor axis of the best fit ellipse
Table 5
Part 2: an analytical study on examples of crop diseases protection and weeds detection approaches; highlights the applied algorithm, plant and data type, data pre-processing and the extracted features
References
Application
Algorithm
Plant
Data type
Data pre-processing
Extracted features
[129]
Leaf disease detection
Deep learning CNN: CaffeNet
13 plants leaves
Images
augmentation by: afine transformation and perspective transformation and rotation manually pre-processing by image cropping and labelling
 
[119] [29]
Weeds classification
ANN:PSO and bee for optimisation
Potatoes rice
Stereo video
Segmentation
Color features & vegetation indices
[128]
Mid-late season weed detection
CNN
Soybean
Aerial images
Overlapped images removal dimenssion reduction annotation
Patches
[118]
Weed detection
DNN
Sugar beet and weeds
Multi-spectral UAV
Segmentation
RGB Color-Infrared NDVI
[106]
Leaf disease detection
RF, SVM, KNN
Alfalfa
Digital images
Lesion: artificial cuttingsegmentation:12 lesion segmentation with K-median clustering and linear discriminant analysis
129 texture colour and shape
[55]
Seeds disease detection
ANN
Orchids
Digital images
Segmentation: an exponential transform with an adjustable parameter
Texture and colours
[109]
Plant disease detection
RF
Soybean
Satellite images Crop rotation
Geometric distortions removal radiometrically and sensor correction image rotation
Spectral bands of:red, green, blueNDVI, NIR
[28]
Leaves disease detection
Transfer learning CNN: abstraction level fusion
Olive
Digital images
segmentation: automatic cropping: Otsu’s algorithm
Edge magnitudes: Gray-scaledShape features: area, perimeter
[6]
10 leaves disease detection
Transfer learning CNN
Eggplant, hyacinth beans ladies finger, lime
Digital images
Segmentation data augmentation
/
[79]
Leaves disease detection
Deep learning: Alex NetGoogLeNet
Apple
Digital images
No pre-processing AlexNet Precursor for features maps max-pooling for GoogLeNet for features extractiondata augmentaion:light disturbance &rotationnoise removal
/
[81]
Plant disease detection
KNN
Wheat
Satellite imagesfield survey
Radiometric calibration atmospheric correction
Red and green bands NIR, vegetation indices:disease water stress index optimised soil adjusted vegetation index shortwave infrared water stress index triangular vegetation index and others
[156]
Plant disease detection
RF
Wheat
Satellite images field canopy hyperspectral
Noise removal image mosaicking Atmospheric correction spatial resolution re-sampling
Disease indexNDVi, EVI and others

Crop maturity monitoring

Crop maturity is a kind of crop yield prediction, but it is based on image data. This technique has been used in fruit detection, like apples, tomatoes, oranges, etc, and provides an early estimation of yield. It is also used for crop monitoring to provide information to farmers with the view to plan their farming operations, adjust management practices before harvesting, etc. Such intelligent systems for monitoring crop implement the data mining process incorporating machine vision and image processing methods among with advanced learning algorithms, such as CNN, SVM and ANN. Unlike crop yield prediction process described above, this process is based on a single-data source; digital images [5, 23, 52, 75, 108, 122] or sensor based-images [117, 123, 153]. Table  6 summarises such techniques. The challenges of these systems are more or less the same as those of systems for crop disease detection and protection. For instance, images with different illumination and lighting angles, complex surroundings and backgrounds, noise, the presence of clouds, etc.
Table 6
An analytical study on examples of crop maturity monitoring (fruits detection and counting) approaches; highlights the applied algorithm, plant and data type, data pre-processing and the extracted features
References
Application
Algorithm
Plant
Data type
Data pre-processing
Extracted features
[123]
Fruit detection
EM
Tomato
High spacial resolution sensor images
Noise and stalks removing spacial segmentation
Shape and size
[23]
Fruit detection
ANN
Apple fruit and tree canopy
Digital images
Segmentation
Area of fruitsarea of small fruits cross-sectional area of foliage fruit number total cross-section total cross-sectional
[108]
Fruit detection
SVM
Coffee
Digital images
Segmentation: homogeneous information
42 colours features
[5]
Fruit detection
BC Gaussian
Cherry
Digital images
Segmentation: enhancements and specular reflections removing by inward interpolation method
Colours features:RGB
[52]
Fruit detection &classification
CNN
Strawberries
Digital images
Hand marking regions of interests
/
[75]
Immature fruit detection
ANN
Peach
Digital images
Hue-Saturation-Intensity for illumination enhancementpixels’ normalisation histogram equalisation reconstruction of images backgoud elimination
Texture features
[117]
Fruit counting
CNN
Sweet pepperrock melon strawberry apple, avocado mango, orange
Multi-spectral images(RGB,NIR)
Pixel-wise segmentaion bounding box annotation
Colour and texture features
[122]
Immature fruitcounting
SVM
Green citrus
Digital images
Images conversion from RGB to graycircular Hough transform
13 texture features

Clustering for crop monitoring

Clustering techniques are not widely employed in DA, few efforts have been deployed to investigate the potential of these techniques for zones’ delineation within a field. There are several reasons for splitting an agricultural field into zones. Some traditional reasons include crop diversification within a field, crop-rotation, facilitating the management tasks, and more recently we defined the zones based on yield maps. This usually helps to improve the overall crop yield of the field, by managing the zones more effectively. Therefore, delineation of Management zones (DMZ) is a very important task for farming operations since determining zones of low-or-high yields, and understanding the reasons behind low yields, can help come up with specific solution for each zone with the view to increase the yields. In addition, it has other economic benefits, because we can target each zone with the right amount of fertilisers, water, and other nutrients.
According to [69], delineation of management zones is an effective way to manage the variability of soil within a field, such that each zone will receive specific management. In [145], a management zone is defined as a subregion of a field that has a relatively homogeneous combination of yield-limiting factors, for which a single rate of a specific crop input is appropriate to reach maximum efficiency of farm inputs. In [53], it is defined as a subregion of a field that is relatively homogeneous with regard to soil attributes.
DMZ is a complex spatial problem, which is addressed in the literature from several perspectives. This has attracted interest from many researchers [61, 85, 87, 110, 140]. A literature review has been presented in [90], where the authors discussed the delineation of soil management zones from the variable-rate fertilisation point of view. many other studies presented the delineation based on various criteria. Some techniques that have been used include topographic maps, direct soil sampling, non-invasive soil sampling by electrical conductivity equipment, soil organic matter or organic estimated by remote sensing, and yield maps built using data collected over several seasons/years [99].
Figure 6 depicts the general process of delineation of management zones designed according to methodologies followed by the majority of the literature.
The majority of problems that are related to crop management imply the management of fields and zones. Therefore, the collected data is usually characterised by geographic coordinates and time associated with each sample, which leads to the use of data mining techniques that are more suitable for spatial and temporal datasets. It is well recognised that agricultural datasets are typically spatio-temporal, as the data is always associated with location and time. However, these datasets contain a significant amount of noise, outliers, and even missing values. For instance, GPS capture devices introduce some noise, imprecisions, and even outliers in the data. Satellite imagery also faces huge imprecision and noise (such as clouds, ...).
Because of the type of the datasets, which is spatio-temporal, it is not surprising to notice that the majority of the clustering algorithms used are of type partitional. K-means and Fuzzy C-Mean (FCM) are considered among the most popular clustering techniques and heavily used to cluster agricultural data [17, 18, 84, 134, 137, 142, 151, 154]. The FCM approach has an advantage over K-means, as it deals better with imprecision and noisy data. Moreover, other types of clustering algorithms have also been proven to be efficient in DA, such as density-based and hierarchical-based clustering techniques applied to DMZ [48, 116].
As mentioned above, besides its huge importance in crop management, delineation of management zone (DMZ) has received much attention, as the data is now available not only from traditional sources but also from refined sources, including advanced data pre-processing techniques. In addition, the recently collected data integrates knowledge of experts and farmers experiences on their fields, which improves significantly the quality of the data [84, 141]. Advanced imaging enhancement techniques improve further the data quality, and they offer the ability to track the development of crops and provide a Geo-referenced data that can describe the spatial and the temporal variability of soil and crops variables at high resolution, covering large areas [17, 84, 101, 132, 133, 141, 151].

Systematic analysis

In the following we will explore the application of data analytics in DA and its extension to big data, and illustrate the practical challenges that hinder the full adoption of DA by farmers.

DA in (small /large) scale farming

Farming can be carried out on a small or large-scale fields depending on several factors like land size, capital, farmer skills, level of use of machinery and technology, etc. According to FAO3 and Grain4, over 90% of all farms worldwide are of small-scale holding on average 2.2 hectares (from 0.6 to 10 hectares), except for Northern America where small farms have an average size of 67.7 hectares5. Small-scale farms represent 25% of the world’s farmland today, where 73.12% are located in developing countries.
In [10] the authors described three categories of smart farming technology, which are complementary:
  • Data acquisition technologies: they are used to acquire the data that is related to the farm. These include remote sensing, weather data, etc.;
  • Data analysis and evaluation technologies: these technologies usually take as input the data that has been collected so far and deliver insight to the farmer. These include computer-based visualisation and decision models, farm management and information systems;
  • Precision application technologies: these are focusing on variable-rate application and guidance technologies.
The application of smart technologies and data analytics for crop management are not restricted to one kind of farm. Nowadays, every farm should adopt smart technologies, as they are needed for variable rates applications (irrigation, pesticides, fertilisers) [72, 102, 154] while protecting the environment.
The size of the farm determines how these technologies will be used. Large farms tend to develop their smart technology to monitor their farming land, or to afford some of the existing sophisticated systems like CropX as they hold the scale and margins. While small farms tend to rent sophisticated machinery and smart applications on demand, especially with the proliferation of cloud technologies that makes these smart applications reasonable, the work of [30] is an example among others, of a smart irrigation system designed for smallholders. Besides, some technologies are more suitable for large-scale farms like drones and aerial vehicles used to monitor crops which are not as profitable or efficient for small scales because they have less difficulty visualising their crops. On the other side, large-scale farms are responsible for 70% of current deforestation6, the largest share of agriculture-related greenhouse-gazes emissions, agricultural water use and habitat disruption resulting in biodiversity loss. Generally, small-scale farms require considerably fewer external inputs and cause minor damage to the environment.
Table  7 summarises the main differences between small and large-scale farming from several perspectives. However, DA can be applied to any kind of farm without restriction. Yet, we have found that the number of papers that addressed large-scale farms is almost the same as works on large-scale farms.
Table 7
Comparison between small-scale and large-scale farming
Basis for comparison
Small-scale farming
Large-scale farming
Basis for comparison
Small-scale farming
Large-scale farming
% of all farms
92.3%
25%
Application of modern smart technologies
Yes
Yes
% of world’s farmland
7.7%
75%
Mapping technologies
Yes
Yes
Budget (investment)
Low to medium
High
Data acquisition (cameras surveying, sensing and navigation)
Yes
Yes
Machinery vs labour
Labour-based
Machinery-based
Variable rate application
Highly used: Irrigation pesticides fertilisation seeding for some crops
Low to medium use: Irrigation fertilisation pesticides
Target crops and cropping system
Humain Food Backyard Arable crops Forage crops Vineyards Field vegetables Orchards
Commercial crops plants grown for animal feed or biofuels wood products other non-food crops
Navigation systems usability (GPS, INS,..) Inertial Navigation system (INS)+ Unmanned vehicles and drones
Low to medium (73.12% of farms situated on developing countries)
High
Farming method
Extensive
intensive
Applications
All applications
All applications
Contributors to agricultural information and knowledge
Low
Medium to high
Users of agricultural information and knowledge
Low
Medium to high
Effective climate change capacity measures and adaptation
Environmentally friendly
Environmentally not friendly
Sustainability
yes
No
Scope
Production for local communities
Corporate farms Factory farms: profit and business oriented plan exportation
Examples of references
[114 , 123, 136, 132, 137]
[ 26, 43, 62, 67, 100, 102, 154]
Technologies for data acquisition Table  7 can be used to all types of farms, such as remote sensing, imagery data systems, and so on. The acquired data, over the years, can lead to the phenomenon of Big Data. If pre-processed and stored properly, this will give a significant competitive advantage to farms that collected them, whether they are small or large. Some of the applications and data analyses that can be performed of the collected are summarised in the Tables  1,  2,  34 and  5,  6.

DA and big data

Big data is not just characterised by the volume, but also by velocity, variety, and others [86]. These are enough to challenge the existing data mining techniques, as trying to develop techniques to deal with large volumes of data (volume), various types of data attributes (variety or heterogeneity), and be able to analyse the new data as soon as it is collected (velocity) are extremely challenging tasks. Moreover, many other characteristics can be found in some big data-driven applications, these include veracity, value, viscosity, veracity, visualisation, etc. In this study, we added veracity, as the data, collected by various instruments and sensors, is of different quality, which creates a huge challenge to the data pre-processing task, and therefore its analysis. In the following, we discuss the impact of Big Data challenges on DA.
  • Velocity: many studies that have been examined do not consider the data velocity during their data collection. In DA, the frequency of collecting data depends on its source and the problem for which the data was collected. Some applications need real-time data and others do not. For instance, crop yield prediction does not need real-time data or data streams. It is performed at ad-hoc, while crop protection and disease detection require high quality sensors and imagery data connected to efficient methods of data analysis, which need continuous control.
  • Variety: this is very common in agricultural datasets, as multiple sources were used to collect all the necessary information about the farm and farming operations. The data values can be a simple number such as temperatures to more elaborated such as imagery data, NDVI, soil texture, etc. This makes the definition of distance measures and other parameters of the learning algorithms very difficult.
  • Veracity: Agricultural data contains many missing values and collected from various sources of varying quality. The data is very noisy, and more importantly it contains many missing values. Therefore, it is very challenging to clean and prepare it for the analysis. This was the case in the work conducted by [37], and also in [9396, 107] where data was collected from very large farming areas.
Table  8, summarises a set of representative papers reported in the paper according to their usage of big data. For each paper, we identify the type, the size, the heterogeneity of data used, and the frequency of its collection. Also, we consider the number and type of ML algorithms used, the complexity of the proposed analysis algorithms and devices used to collect data, data analysis applied to a given crop and problem to solve. One can notice while the data analysis algorithms and techniques were heavily used and varied, the rigorous process of knowledge discovery was not followed, usually the data is relatively small either in size (small observations) or the data has few dimensions (for instance, considering only weather data, or fertiliser, without taking into account other factors).
From Table  8, we can extract three classes of applications according to their usage of big data: Full usage (the data contains all the characteristics of big data), light usage (the data contains some characteristics), non-usage (the data does not contain any characteristic of big data).
Table 8
DA applications and their usage of big data concepts
References
V1
V2
V3
V4
ML
Complexity
Device
Task
[2]
224 images
/
No
Image Data digital images
SVM
\(O(n^2*P+n^3 )+O(n_{sv}*P)\)
Digital camera
Classification
[18]
3*2 years of data monitoring
1 year
/
Sensor data: soil properties
FCM
time: \(O(n*d*c^2*i)\) space:\(O(n*d + n*c)\)
Pressure-based AgLeader
Clustering
[26]
/
/
No
Satellite data: Images in GeoTiff
EnsembleLearning (DT+ SVM+ ANN)
\(O(n^2*P)+O(P)+ O(n^2*P+n^3 )\) \(+O(n_{sv}*P)+\) \(O(ep*n(nl_{1}*nl_{2}+ nl_{2}*nl_{3}+...)+\) \(O(P*nl_1+nl_1*nl_2+ nl_2*nl_3+...)\)
Satellite
Classification
[38]
87.8K
/
Yes
Image data: Open database images
CNN
\(O(T*Q*t*q)\)
/
Classification
[40]
/
/
Yes
All data types: yield climate informationsoil Geo-physical NDVI Remote sensed
RF
\(O(n^2*P * n_{trees} )+O(P * n_{trees} )\)
Yield monitor soil-maps, EM gamma survey MODIS
Prediction
[46]
6217
/
/
Historicalsensor data: Yield climate
SVR, KNN, ANN
\(O(n^2P+n^3 )+O(n_{sv}*P);\) \(O(n*P);\) \(O(ep*n(nl_{1}*nl_{2}+ nl_{2}*nl_{3}+...)+\) \(O(P*nl_1+nl_1*nl_2+ nl_2*nl_3+...)\)
Spriter-GIS system
Prediction
[57]
229
1 year
Yes
Historical data: Crop yield
K-means
\(O(n*c*d*i)\)
/
Clustering
[59]
Precipitation: 47554 min/max temperature:24542 mean temperature:14835
/
Yes
Sensor data: Crop yield soil Biophysical climate water photo-period, fertilisation
RF
\(O(n^2*P*n_{trees} )+O(P*n_{trees} )\)
/
Prediction
[33]
10413
/
/
Image data: Digital images
CNN
\(O(T*Q*t*q)\)
Cell phone
Classifiation
[73]
/
1 year
No
Historical data: Crop yield soil parameters
ELM
\(O(L^3+L^2*n)\)
/
Prediction
[75]
96
1year
Yes
Image data: Digital images
SVM, ANN, NBKNN DT Discriminant analysis
Discriminant analysis: \(O(n*P^2 )\) NB: \(O(n*p)+ O(P)\)
Camera Nikon CoolpixL22
Classification
[76]
4 Landsat-8 scenes 15 Sentinel-1 scenes
/
Yes
Satellite data: Multi-temporal multi-source images
CNN
\(O(T*Q*t*q)\)
Landsat-8, Sentinel-1A satellites
Classification
[152]
8945
multi-spectral image: 8 days interval for 30 per year
Yes
Satellite, sensor data: surface reflectance land surface temperature land cover
Gaussian CNN
\(O(T*Q*t*2)\)
MODIS satellite
Prediction
[62]
/
2006-2011 8 days period 32 times
/
Satellite sensor data: NDVI Precipitation land surface temperature
Rulequest cubist
\(O(n^2*P)\)
MODIS satellite
Prediction
No data was clear,Yes data was cleaned and filtered and some samples were not considered because of abnormalities, inconsistencies or duplication and for other reasons,n number of data points.\(n_{sv}\): number of support vectors,P number of features,\(n_{trees}\): number of trees,c number of cluster,d number of dimension.i number of iterations,L number of hidden layers,\(T * Q\) size of input feature map; spatial, two/three-dimensional kernels are of size \((t * q)\),\(nl_{i}\) :number of neurons at layer i,ep: number of epochs
To examine the degree of use of the big data concept and to figure out which of its dimension is more present, we conducted a statistical study where we classify works according to their employment of the 4Vs of big data.
Figures  7 and  8 show that no work has a full employment of big data (4Vs). One can notice that the agricultural data is multidimensional and heterogeneous (variety). Moreover, we have found that the prediction applications display more use of big data, there exist studies that have used three dimensions such as DMZ applications. It is worth noting that these applications, either prediction or delineation of zones, have the potential to use big data to provide stable and accurate results.
If we put aside the volume dimension (V1) (see Figure  7, only 7% of the reviewed studies used (V2, V3 and V4), and 32% of studies just employed data mining techniques for agriculture problems. The most employed data mining techniques are for prediction, including yield prediction, forecasting, prediction of fertiliser applications, etc.

DA practical challenges

There exist a number of challenges and obstacles impeding the potential benefit of DA. In [104], the authors studied the barriers that prevent the adoption of smart farming in their country, Brazil. Some of these barriers include lack of integration and compatibility between different agriculture systems, lack of advanced data manipulation of data obtained from different equipment, poor telecommunications infrastructure on rural areas, and finally, the lack of training in deploying and using new technologies. These barriers are common to the majority of countries in the world.
From the Table  7, we can see that over 73% of crop farms are located in developing countries. So that, the investment in high and sophisticated DA technologies is not there. Most of the main technologies used in DA systems (GPS, UAV, auto-steering and variable rate technology) are designed for relatively large-scale farms located in developed countries [10] or designed by developed countries. Some of these technologies are becoming available recently. For instance, since 2018 African scientists can have access to free and open-source satellite data as a result of a deal signed by the African Union with the European Commission’s Copernicus programme.
As DA is relatively new technology, there is a lack of standards and common solutions for data collection, preparation and storage. In addition, there is a lack of data for many reasons, farmers did not record their data and it takes time to build significant historical datasets [20, 39, 77, 78, 92, 146]. Another major barrier is that many farmers are relying more on their expertise and refusing to adopt these new and complex technologies [10]. Moreover, the transition from their traditional practices and farming habits to these technologies comes with a cost and energy (training and learning new skills).
[20] States that the legal and regulatory frameworks around the collection, sharing and use of agricultural data contributes to a range of challenges. Many laws potentially influence the ownership, control of and data access. Ref. [74] presented a set of socio-ethical imperatives associated with the use of data in agriculture, including dependency risks, data concentration, potential lock-in effects, and the peril of transformation of farmers into information tools, in addition to the sustainability challenges.
Finally, according to [47], the real economic value of the use of big data in farming is still unknown, especially for small-scale farming. Consequently, it will be hard to convince them to switch from process-driven towards data and machine learning driven. This is reaffirmed in [20], where the authors stated that on one side, farmers are enticed with promises of increased profits and farming efficiency, on the other hand the proofs are not there yet.

Conclusion

Digital agriculture (DA) is a data-driven approach that exploits the hidden information within the collected data to gain new insights; transforming the farming practices from intuitive-based decision-making to informed-based decision-making. DA relies on efficient data collection practices, efficient data preparation and storage techniques, efficient data analytics, and efficient deployment and exploitation of the gained insights to make optimal farming decisions.
In this study, we presented a systematic review of the potential use of the data mining process in crop production and management and highlighted serious gaps which can be considered in future studies. The majority of the current practices were dominated by statistical analyses and small machine learning systems. However, these can only give some ideas within a very limited view of the overall system. Agricultural data-driven applications collect a significant amount of data from various sources. This constitutes an excellent opportunity to the field to answer numerous research and practical questions that were not possible before. Nevertheless, despite all the advantages that can be gained from DA, there are several other challenges and obstacles that need to be addressed, among them lack of data, lack of skills, and lack of maturity and standards so that it can be adopted and deployed quickly and easily.
In this study, we cover approaches that deal the entire process of data mining; from data collection to knowledge deployment. We cover this process from big data view, with more focus on crop monitoring and management in an attempt to understand the challenges that DA is currently facing. We defined the research questions addressed by the study and provided a classification of data mining techniques used in the field. For each class, a set of representative existing works have been reviewed, and an analytical study has been provided to highlight the category of machine learning method applied and for which purpose. We discussed the big data concepts and its current impact on DA, and showed that from the data analyst’s view, the transition towards DA is ready to embrace big data analytics concepts. This provides new opportunities of investment into these challenges and allows for a efficient ways of managing crops. Besides, it will provide farmers with new insights into how they can grow crops more efficiently, while minimising the impact on the environment. It also promises new levels of scientific discovery and innovative solutions to more complex problems.

Acknowledgements

This work is supported by the SFI Strategic Partnerships Programme (16/SPP/3296) and is co-funded by Origin Enterprises Plc.

Declarations

Not applicable.
Not applicable.

Competing interests

The authors declare that they have no competing interests.
Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creativecommons.​org/​licenses/​by/​4.​0/​.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Fußnoten
1
European Commission. Brussels. Preparing for Future AKIS in Europe, 2019.
 
5
According to the criterion put forward by Lincoln University in Nebraska, which defines a small farm in the US as one with an annual turnover of less than US$50,000)
 
6
IPBES, 2019: Global Assessment Report on Biodiversity and Ecosystem Services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services.
 
Literatur
7.
Zurück zum Zitat Aravind K, Maheswari P, Raja P, Szczepanski C. Crop disease classification using deep learning approach: an overview and a case study. In: Das H, Pradhan C, Dey N, editors. Deep learning for data analytics foundations, biomedical applications, and challenges. Cambridge: Academic Press; 2020. p. 173–95. https://doi.org/10.1016/b978-0-12-819764-6.00010-7. Aravind K, Maheswari P, Raja P, Szczepanski C. Crop disease classification using deep learning approach: an overview and a case study. In: Das H, Pradhan C, Dey N, editors. Deep learning for data analytics foundations, biomedical applications, and challenges. Cambridge: Academic Press; 2020. p. 173–95. https://​doi.​org/​10.​1016/​b978-0-12-819764-6.​00010-7.
10.
Zurück zum Zitat Balafoutis AT, Beck B, Fountas S, Tsiropoulos Z, Vangeyte J, van der Wal T, Soto-Embodas I, Gomez-Barbero M, Pedersen S,. Smart farming technologies–description taxonomy and economic impact. In: Pedersen SM, Lind K, editors. Precision agriculture: technology and economic perspectives, progress in precision agriculture, chapter 2. Cham: Springer; 2017. p. 21–78. https://doi.org/10.1007/978-3-319-68715-5. Balafoutis AT, Beck B, Fountas S, Tsiropoulos Z, Vangeyte J, van der Wal T, Soto-Embodas I, Gomez-Barbero M, Pedersen S,. Smart farming technologies–description taxonomy and economic impact. In: Pedersen SM, Lind K, editors. Precision agriculture: technology and economic perspectives, progress in precision agriculture, chapter 2. Cham: Springer; 2017. p. 21–78. https://​doi.​org/​10.​1007/​978-3-319-68715-5.
13.
Zurück zum Zitat Bendre M, Thool R, Thool V. Big data in precision agriculture through ICT: rainfall prediction using neural network approach. In: Satapathy S, Bhatt Y, Joshi A, Mishra D, editors. Proceedings of the International congress on information and communication technology. Singapore: Springer; 2016. p. 165–75. Bendre M, Thool R, Thool V. Big data in precision agriculture through ICT: rainfall prediction using neural network approach. In: Satapathy S, Bhatt Y, Joshi A, Mishra D, editors. Proceedings of the International congress on information and communication technology. Singapore: Springer; 2016. p. 165–75.
14.
Zurück zum Zitat Berckmans D. Precision livestock farming technologies for welfare management in intensive livestock systems. Rev Sci. 2014;33:189–96. Berckmans D. Precision livestock farming technologies for welfare management in intensive livestock systems. Rev Sci. 2014;33:189–96.
16.
22.
Zurück zum Zitat Chen N, Yu L, Zhang X, Shen Y, Zeng L, Hu Q, Niyogi D. Mapping paddy rice fields by combining multi-temporal vegetation index and synthetic aperture radar remote sensing data using google earth engine machine learning platform. Remote Sens. 2020;2020. https://doi.org/10.3390/rs12182992. Chen N, Yu L, Zhang X, Shen Y, Zeng L, Hu Q, Niyogi D. Mapping paddy rice fields by combining multi-temporal vegetation index and synthetic aperture radar remote sensing data using google earth engine machine learning platform. Remote Sens. 2020;2020. https://​doi.​org/​10.​3390/​rs12182992.
24.
Zurück zum Zitat Chergui N, Kechadi T, McDonnell M, The impact of data analytics in digital agriculture: a review. In: the 2020 IEEE International multi-conference on: organization of knowledge and advanced technologies (OCTA). Isko-Maghreb: ’International society for knowledge organization’. February 6-8, 2020 Tunis (Tunisia). 2020. https://doi.org/10.1109/OCTA49274.2020.9151851 Chergui N, Kechadi T, McDonnell M, The impact of data analytics in digital agriculture: a review. In: the 2020 IEEE International multi-conference on: organization of knowledge and advanced technologies (OCTA). Isko-Maghreb: ’International society for knowledge organization’. February 6-8, 2020 Tunis (Tunisia). 2020. https://​doi.​org/​10.​1109/​OCTA49274.​2020.​9151851
25.
Zurück zum Zitat Chinchuluun R, Lee W, Bhorania J, Pardalos P. Clustering and classification algorithms in food and agricultural applications: a survey. In: Papajorgji PJ, Pardalos PM, editors. Advances in modelling agricultural systems springer optimisation and its applications. Boston: Springer; 2008. p. 433–54. Chinchuluun R, Lee W, Bhorania J, Pardalos P. Clustering and classification algorithms in food and agricultural applications: a survey. In: Papajorgji PJ, Pardalos PM, editors. Advances in modelling agricultural systems springer optimisation and its applications. Boston: Springer; 2008. p. 433–54.
29.
Zurück zum Zitat Dadashzadeh M, Abbaspour-Gilandeh Y, Mesri-Gundoshmian T, Sabzi S, Hernández-Hernández J, Hernández-Hernández M, Arribas J. Weed classification for site-specific weed management using an automated stereo computer-vision machine-learning system in rice fields. Plants. 2020;5:22–36. https://doi.org/10.3390/plants9050559.CrossRef Dadashzadeh M, Abbaspour-Gilandeh Y, Mesri-Gundoshmian T, Sabzi S, Hernández-Hernández J, Hernández-Hernández M, Arribas J. Weed classification for site-specific weed management using an automated stereo computer-vision machine-learning system in rice fields. Plants. 2020;5:22–36. https://​doi.​org/​10.​3390/​plants9050559.CrossRef
36.
Zurück zum Zitat Fardusi MJ, Chianucci F, Barbati A. Concept to practice of geospatial-information tools to assist forest management and planning under precision forestry framework a review. Ann Silvic Res. 2017;41:3–14. https://doi.org/10.12899/asr-1354. Fardusi MJ, Chianucci F, Barbati A. Concept to practice of geospatial-information tools to assist forest management and planning under precision forestry framework a review. Ann Silvic Res. 2017;41:3–14. https://​doi.​org/​10.​12899/​asr-1354.
37.
Zurück zum Zitat Feldman B, Martin E, Skotnes T. Big data in healthcare hype and hope, october 2012.dr. bonnie 2012;360, 2012. Http://www.westinfo.eu/files/big-data-inhealthcare Feldman B, Martin E, Skotnes T. Big data in healthcare hype and hope, october 2012.dr. bonnie 2012;360, 2012. Http://www.westinfo.eu/files/big-data-inhealthcare
40.
Zurück zum Zitat Filippi P, Jones E, Bishop T, Acharige N, Dewage S, Johnson L, Ugbaje S, Jephcott T, Paterson S, Whelan B. A big data approach to predicting crop yield. In: Proceedings of the 7th Asian-Australasian Conference on Precision Agriculture 16-18 October 2017. Hamilton; 2017.https://doi.org/10.5281/zenodo.893668 Filippi P, Jones E, Bishop T, Acharige N, Dewage S, Johnson L, Ugbaje S, Jephcott T, Paterson S, Whelan B. A big data approach to predicting crop yield. In: Proceedings of the 7th Asian-Australasian Conference on Precision Agriculture 16-18 October 2017. Hamilton; 2017.https://​doi.​org/​10.​5281/​zenodo.​893668
41.
Zurück zum Zitat Formaggio A, Vieira M, Renno C. Object based image analysis (obia) and data mining (dm) in landsat time series for mapping soybean in intensive agricultural regions. In: Proceedings of IEEE International Geoscience and Remote Sensing Symposium. 22-27 July 2012. Munich; 2012. p. 2257–2260. https://doi.org/10.1109/IGARSS.2012.6351047 Formaggio A, Vieira M, Renno C. Object based image analysis (obia) and data mining (dm) in landsat time series for mapping soybean in intensive agricultural regions. In: Proceedings of IEEE International Geoscience and Remote Sensing Symposium. 22-27 July 2012. Munich; 2012. p. 2257–2260. https://​doi.​org/​10.​1109/​IGARSS.​2012.​6351047
47.
Zurück zum Zitat Griffin T, Mark T, Ferrell S, Janzen T, Ibendahl G, Bennett J, Maurer J, Shanoyan A. Big data considerations for rural property professionals. Am Soc Farm Manage Rural Appraisers. 2016;79:167–80. Griffin T, Mark T, Ferrell S, Janzen T, Ibendahl G, Bennett J, Maurer J, Shanoyan A. Big data considerations for rural property professionals. Am Soc Farm Manage Rural Appraisers. 2016;79:167–80.
61.
Zurück zum Zitat Jiang Q, Wang QFZ. Study on delineation of irrigation management zones based on management zone analyst software. In: Jiang Q, editor. Computer and computing technologies in agriculture IV. CCTA 2010 IFIP advances in information and communication technology, vol. 346. Berlin: Springer; 2011. p. 4559–66. https://doi.org/10.1007/978-3-642-18354-6_50 Jiang Q, Wang QFZ. Study on delineation of irrigation management zones based on management zone analyst software. In: Jiang Q, editor. Computer and computing technologies in agriculture IV. CCTA 2010 IFIP advances in information and communication technology, vol. 346. Berlin: Springer; 2011. p. 4559–66. https://​doi.​org/​10.​1007/​978-3-642-18354-6_​50
74.
Zurück zum Zitat Kritikos M. Precision agriculture in europe: legal, social and ethical considerations. science and technology options assessment. Scientific foresight unit (STOA) of the European parliament, brussels pe 603.207. 2017. Kritikos M. Precision agriculture in europe: legal, social and ethical considerations. science and technology options assessment. Scientific foresight unit (STOA) of the European parliament, brussels pe 603.207. 2017.
82.
87.
Zurück zum Zitat Metwally M, Shaddad S, Liu M, Yao R, Abdo A, Li P, Jiao J, Chen X. Soil properties spatial variability and delineation of site-specific management zones based on soil fertility using fuzzy clustering in a hilly field in Jianyang, Sichuan, China. Sustainability. 2019;2019. https://doi.org/10.3390/su11247084. Metwally M, Shaddad S, Liu M, Yao R, Abdo A, Li P, Jiao J, Chen X. Soil properties spatial variability and delineation of site-specific management zones based on soil fertility using fuzzy clustering in a hilly field in Jianyang, Sichuan, China. Sustainability. 2019;2019. https://​doi.​org/​10.​3390/​su11247084.
95.
Zurück zum Zitat Ngo VM, Kechadi MT Crop knowledge discovery based on agricultural big data integration. In: Proceedings of the 4th International conference on machine learning and soft computing, association for computing machinery. New York; ICMLSC. 2020. https://doi.org/10.1145/3380688.3380705 Ngo VM, Kechadi MT Crop knowledge discovery based on agricultural big data integration. In: Proceedings of the 4th International conference on machine learning and soft computing, association for computing machinery. New York; ICMLSC. 2020. https://​doi.​org/​10.​1145/​3380688.​3380705
101.
Zurück zum Zitat Pantazi X, Moshou D, Mouazen A, Alexandridis T, Kuang B. Data fusion of proximal soil sensing and remote crop sensing for the delineation of management zones in arable crop precision farming. In: CEUR Workshop Proceedings. CEUR-WS. 2015. p. 765–776. Pantazi X, Moshou D, Mouazen A, Alexandridis T, Kuang B. Data fusion of proximal soil sensing and remote crop sensing for the delineation of management zones in arable crop precision farming. In: CEUR Workshop Proceedings. CEUR-WS. 2015. p. 765–776.
105.
Zurück zum Zitat Poppe K, Wolfert S, Verdouw C, Verwaart T. Information and communication technology as a driver for change in agri-food chains. Eurochoices. 2013;12:60–5.CrossRef Poppe K, Wolfert S, Verdouw C, Verwaart T. Information and communication technology as a driver for change in agri-food chains. Eurochoices. 2013;12:60–5.CrossRef
107.
111.
Zurück zum Zitat Rezapour S, Jooyandeh E, Ramezanzade M, Mostafaeipour S, Jahangiri M, Issakhov A, Chowdhury S, Techato K. Forecasting rainfed agricultural production in arid and semi-arid lands using learning machine methods: a case study. Sustainability. 2021;13:4607. https://doi.org/10.3390/su13094607.CrossRef Rezapour S, Jooyandeh E, Ramezanzade M, Mostafaeipour S, Jahangiri M, Issakhov A, Chowdhury S, Techato K. Forecasting rainfed agricultural production in arid and semi-arid lands using learning machine methods: a case study. Sustainability. 2021;13:4607. https://​doi.​org/​10.​3390/​su13094607.CrossRef
116.
Zurück zum Zitat RuB G, Krus R. Exploratory hierarchical clustering for management zone delineation in precision agriculture. In: Industrial conference on data mining ICDM 2011: advances in data mining. Applications and theoretical aspects. Lecture notes in computer science book series (LNCS, volume 6870). 2011. p. 161–173. https://doi.org/10.1007/978-3-642-23184-1_13 RuB G, Krus R. Exploratory hierarchical clustering for management zone delineation in precision agriculture. In: Industrial conference on data mining ICDM 2011: advances in data mining. Applications and theoretical aspects. Lecture notes in computer science book series (LNCS, volume 6870). 2011. p. 161–173. https://​doi.​org/​10.​1007/​978-3-642-23184-1_​13
118.
Zurück zum Zitat Sa I, Popovic M, Khanna R, Chen Z, Lottes P, Liebisch F, Nieto J, Stachniss C, Walter A, Siegwart R. Weedmap: a large-scale semantic weed mapping framework using aerial multispectral imaging and deep neural network for precision farming. Remote Sens. 2018. https://doi.org/10.3390/rs10091423.CrossRef Sa I, Popovic M, Khanna R, Chen Z, Lottes P, Liebisch F, Nieto J, Stachniss C, Walter A, Siegwart R. Weedmap: a large-scale semantic weed mapping framework using aerial multispectral imaging and deep neural network for precision farming. Remote Sens. 2018. https://​doi.​org/​10.​3390/​rs10091423.CrossRef
128.
130.
Zurück zum Zitat Soma K, Bogaardt M, Poppe K, Wolfert S, Beers G, Urdu D, Kirova MP, Thurston C, Belles CM. Research for agri committee. impacts of the digital economy on the food chain and the cap. Policy department for structural and cohesion policies. European parliament. Brussels; 2019. Soma K, Bogaardt M, Poppe K, Wolfert S, Beers G, Urdu D, Kirova MP, Thurston C, Belles CM. Research for agri committee. impacts of the digital economy on the food chain and the cap. Policy department for structural and cohesion policies. European parliament. Brussels; 2019.
134.
Zurück zum Zitat Speranza E, Ciferri R, Ciferri C. Clustering approaches and ensembles applied in the delineation of management classes in precision agriculture. In: Proceedings of the XVII GEOINFO, November 2016. Campos do Jordao; 2016. p. 27-30. Speranza E, Ciferri R, Ciferri C. Clustering approaches and ensembles applied in the delineation of management classes in precision agriculture. In: Proceedings of the XVII GEOINFO, November 2016. Campos do Jordao; 2016. p. 27-30.
135.
Zurück zum Zitat Stombaugh T, Shearer S. Equipment technologies for precision agriculture. J Soil Water Conserv. 2000;55:6–11. Stombaugh T, Shearer S. Equipment technologies for precision agriculture. J Soil Water Conserv. 2000;55:6–11.
137.
Zurück zum Zitat Tagarakis A, Liakos V, Fountas S, Koundouras S, Gemtos T. Management zones delineation using fuzzy clustering techniques in grapevines. Prec Agric. 2013;14:18–39.CrossRef Tagarakis A, Liakos V, Fountas S, Koundouras S, Gemtos T. Management zones delineation using fuzzy clustering techniques in grapevines. Prec Agric. 2013;14:18–39.CrossRef
138.
Zurück zum Zitat Taylor S, Veal M, Grift T, Mcdonald T, Corley F. Precision forestry-operational tactics for today and tomorrow. In: In: 25th annual Meeting of the council of Forest Engineers. Auburn: Auburn University; 2002. Taylor S, Veal M, Grift T, Mcdonald T, Corley F. Precision forestry-operational tactics for today and tomorrow. In: In: 25th annual Meeting of the council of Forest Engineers. Auburn: Auburn University; 2002.
142.
Zurück zum Zitat Vendrusculo L, Kaleita A. Modeling zone management in precision agriculture through fuzzy c-means technique at spatial database. In: Proceedings of the 2011 ASABE Annual International Meeting Sponsored by ASABE. Gault House, Louisville, Kentucky. August 7-10. 2016. p. 350–359. https://doi.org/10.13031/2013.38168 Vendrusculo L, Kaleita A. Modeling zone management in precision agriculture through fuzzy c-means technique at spatial database. In: Proceedings of the 2011 ASABE Annual International Meeting Sponsored by ASABE. Gault House, Louisville, Kentucky. August 7-10. 2016. p. 350–359. https://​doi.​org/​10.​13031/​2013.​38168
147.
Zurück zum Zitat Wolfert S, Sorensen C, Goense D. Precision forestry-operational tactics for today and tomorrow. In: Global Conference (SRII). San Jose: Annual SRII. IEEE; 2014. p. 266–73. Wolfert S, Sorensen C, Goense D. Precision forestry-operational tactics for today and tomorrow. In: Global Conference (SRII). San Jose: Annual SRII. IEEE; 2014. p. 266–73.
151.
Zurück zum Zitat Yan L, Zhou S, Cifang W, Hongyi L, Feng L. Classification of management zones for precision farming in saline soil based on multi-data sources to characterize spatial variability of soil properties. Trans Chin Soc Agric Eng. 2007;23:84–9. Yan L, Zhou S, Cifang W, Hongyi L, Feng L. Classification of management zones for precision farming in saline soil based on multi-data sources to characterize spatial variability of soil properties. Trans Chin Soc Agric Eng. 2007;23:84–9.
152.
Zurück zum Zitat You J, Li X, Low M, Lobell D, Ermon S. Deep gaussian process for crop yield prediction based on remote sensing data. In: the Thirty-First AAAI Conference on Artificial Intelligence. AAAI Publications. 2017. p. 4559–4566. You J, Li X, Low M, Lobell D, Ermon S. Deep gaussian process for crop yield prediction based on remote sensing data. In: the Thirty-First AAAI Conference on Artificial Intelligence. AAAI Publications. 2017. p. 4559–4566.
155.
Metadaten
Titel
Data analytics for crop management: a big data view
verfasst von
Nabila Chergui
Mohand Tahar Kechadi
Publikationsdatum
01.12.2022
Verlag
Springer International Publishing
Erschienen in
Journal of Big Data / Ausgabe 1/2022
Elektronische ISSN: 2196-1115
DOI
https://doi.org/10.1186/s40537-022-00668-2

Weitere Artikel der Ausgabe 1/2022

Journal of Big Data 1/2022 Zur Ausgabe

Premium Partner