Skip to main content

2023 | OriginalPaper | Buchkapitel

4. Data Preparation

verfasst von : Frank Acito

Erschienen in: Predictive Analytics with KNIME

Verlag: Springer Nature Switzerland

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This chapter focuses on data preparation, a crucial step in the analytics process to ensure that the data used for modeling is of the highest quality. The chapter covers various aspects of data preparation, including obtaining the needed data, data cleaning, handling missing values, detecting and dealing with outliers, and feature engineering.
The chapter starts by highlighting that a company’s data warehouse may not always provide the required data in the correct form, and data must be assembled, cleaned, and tailored to the analytics problem. It emphasizes the importance of having the right type of data, such as predictors and outcome variables for predictive modeling, and the need for external data integration from various sources.
Data cleaning is discussed in detail, acknowledging that datasets may contain inaccurate, incomplete, or inconsistent values, among other issues. The chapter lists several activities for data cleaning, such as removing duplicate records, dealing with missing values, identifying and handling outliers, and ensuring consistency in formats and units of measurement.
The presence of missing values is recognized as one of the most challenging problems in analytics. The chapter discusses the types of missing values (MCAR, MAR, MNAR). It outlines various techniques for handling missing data, such as listwise deletion, imputation methods, and using indicator variables for missingness.
Outliers are discussed in the context of both univariate and multivariate methods for detection. The chapter emphasizes that outliers should not be routinely removed without careful consideration and domain knowledge. Instead, different techniques for handling outliers, such as replacing them with missing value indicators or Winsorizing, are provided.
Feature engineering is introduced to improve predictive model performance by creating new variables or transforming existing ones. The chapter presents examples of feature engineering, including creating new variables from existing ones, adding polynomial terms, and using transformations to reduce skewness.
Throughout the chapter, the KNIME data analytics platform is demonstrated to carry out various data preparation tasks, such as missing value handling, outlier detection, and transformations.
In conclusion, this chapter emphasizes the significance of data preparation in the analytics process and provides practical guidance and examples for data cleaning, missing value handling, outlier detection, and feature engineering using KNIME.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Fußnoten
2
It is possible to empirically evaluate what threshold level missing values would be optimal by running a model with varying the percentage from 0% to 100% and checking model performance.
 
3
Bandwidth in a density plot can vary from 0 (no smoothing) to ∞ (complete smoothing).
 
4
Outliers should not be routinely deleted because they are not necessarily bad observations. In some cases, they can be quite informative. On the other hand, if the outlier appears to be a recording or measurement error or is otherwise invalid, then the outlier can be discarded. It is important to have domain knowledge to make such judgments.
 
5
Binning is also referred to as “discretization” or “bucketing.”
 
6
Terms such as independent variables, predictors, factors, and inputs are typically used by statisticians, while the term features is more prevalent in the context of machine learning. In addition, some authors distinguish between “raw” variables and “features,” with the latter referring to constructed variables.
 
Literatur
Zurück zum Zitat Aquinis, H., Gottfredson, R., & Joo, H. (2013). Best-practice recommendations for defining, identifying, and handling outliers. Organizational Research Methods, 16, 270–301.CrossRef Aquinis, H., Gottfredson, R., & Joo, H. (2013). Best-practice recommendations for defining, identifying, and handling outliers. Organizational Research Methods, 16, 270–301.CrossRef
Zurück zum Zitat Babbage, C. (1864). Passages from the life of a philosopher. Longman, Green, Longman, Roberts, Green.MATH Babbage, C. (1864). Passages from the life of a philosopher. Longman, Green, Longman, Roberts, Green.MATH
Zurück zum Zitat Bischl, B., Lang, M., Kotthoff, L., Schiffner, J., Richter, J., Studerus, E., Casalicchio, G., & Jones, Z. M. (2016). mlr: Machine learning in R. Journal of Machine Learning Research, 17(170), 1–5.MathSciNetMATH Bischl, B., Lang, M., Kotthoff, L., Schiffner, J., Richter, J., Studerus, E., Casalicchio, G., & Jones, Z. M. (2016). mlr: Machine learning in R. Journal of Machine Learning Research, 17(170), 1–5.MathSciNetMATH
Zurück zum Zitat Little, R. J., & Rubin, D. B. (1989). The analysis of social science data with missing values. Sociological Methods & Research, 18(2–3), 292–326.CrossRef Little, R. J., & Rubin, D. B. (1989). The analysis of social science data with missing values. Sociological Methods & Research, 18(2–3), 292–326.CrossRef
Zurück zum Zitat Summers, J. (n.d.). If something looks wrong, it probably is wrong. Summers, J. (n.d.). If something looks wrong, it probably is wrong.
Zurück zum Zitat Tukey, J. (1977). Exploratory data analysis. Addison-Wesley.MATH Tukey, J. (1977). Exploratory data analysis. Addison-Wesley.MATH
Metadaten
Titel
Data Preparation
verfasst von
Frank Acito
Copyright-Jahr
2023
DOI
https://doi.org/10.1007/978-3-031-45630-5_4