Skip to main content

2018 | OriginalPaper | Buchkapitel

Data-Specific Feature Selection Method Identification for Most Reproducible Connectomic Feature Discovery Fingerprinting Brain States

verfasst von : Nicolas Georges, Islem Rekik, for the Alzheimers’s Disease Neuroimaging Initiative

Erschienen in: Connectomics in NeuroImaging

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Machine learning methods present unprecedented opportunities to advance our understanding of the connectomics of brain disorders. With the proliferation of extremely high-dimensional connectomic data drawn from multiple neuroimaging sources (e.g., functional and structural MRIs), effective feature selection (FS) methods have become indispensable components for (i) disentangling brain states (e.g., early vs late mild cognitive impairment) and (ii) identifying connectional features that might serve as biomarkers for treatment. Strangely, despite the extensive work on identifying stable discriminative features using a particular FS method, the challenge of choosing the best one from a large pool of existing FS techniques for optimally achieving (i) and (ii) using a dataset of interest remains unexplored. In essence, the question that we aim to address in this work is: “Given a set of feature selection methods \(\{FS_1, \dots , FS_K \}\), and a dataset of interest, which FS method might produce the most reproducible and ‘trustworthy’ connectomic features that accurately differentiate between two brain states?” This paper is an attempt to address this question by evaluating the performance of a particular feature selection for a specific data type in fulfilling criteria (i) and (ii). To this aim, we propose to model the relationships between a set of FS methods using a multi-graph architecture, where each graph quantifies the feature reproducibility power between graph nodes at a fixed number of top ranked features. Next, we integrate the reproducibility graphs with a discrepancy graph which captures the difference in classification performance between FS methods. This allows to identify, for a dataset of interest, the ‘central’ node with the highest degree, which reveals the most reliable and reproducible FS method for the target brain state classification task along with the most discriminative features fingerprinting these brain states. We evaluated our method on multi-view brain connectomic data for late mild cognitive impairment vs Alzheimer’s disease classification. Our experiments give insights into reproducible connectional features fingerprinting late dementia brain states.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Fornito, A., Zalesky, A., Breakspear, M.: The connectomics of brain disorders. Nat. Rev. Neurosci. 16, 159 (2015)CrossRef Fornito, A., Zalesky, A., Breakspear, M.: The connectomics of brain disorders. Nat. Rev. Neurosci. 16, 159 (2015)CrossRef
2.
Zurück zum Zitat Mahjoub, I., Mahjoub, M.A., Rekik, I.: Brain multiplexes reveal morphological connectional biomarkers fingerprinting late brain dementia states. Sci. Rep. 8(1), 4103 (2018)CrossRef Mahjoub, I., Mahjoub, M.A., Rekik, I.: Brain multiplexes reveal morphological connectional biomarkers fingerprinting late brain dementia states. Sci. Rep. 8(1), 4103 (2018)CrossRef
4.
Zurück zum Zitat Zhao, F., Zhang, H., Rekik, I., An, Z., Shen, D.: Diagnosis of autism spectrum disorders using multi-level high-order functional networks derived from resting-state functional MRI. Front. Hum. Neurosci. 12, 184 (2018). https://doi.org/10.3389/fnhumCrossRef Zhao, F., Zhang, H., Rekik, I., An, Z., Shen, D.: Diagnosis of autism spectrum disorders using multi-level high-order functional networks derived from resting-state functional MRI. Front. Hum. Neurosci. 12, 184 (2018). https://​doi.​org/​10.​3389/​fnhumCrossRef
5.
Zurück zum Zitat Bullmore, E., Sporns, O.: Complex brain networks: graph theoretical analysis of structural and functional systems. Nat. Rev. Neurosci. 10, 186 (2009)CrossRef Bullmore, E., Sporns, O.: Complex brain networks: graph theoretical analysis of structural and functional systems. Nat. Rev. Neurosci. 10, 186 (2009)CrossRef
6.
Zurück zum Zitat Liu, H., Motoda, H.: Computational methods of feature selection (2007) Liu, H., Motoda, H.: Computational methods of feature selection (2007)
7.
Zurück zum Zitat Van Essen, D.C., Glasser, M.F.: The human connectome project: progress and prospects. Cerebrum Dana Forum Brain Sci. 2016 (2016) Van Essen, D.C., Glasser, M.F.: The human connectome project: progress and prospects. Cerebrum Dana Forum Brain Sci. 2016 (2016)
8.
Zurück zum Zitat Lisowska, A., Rekik, I.: Pairing-based ensemble classifier learning using convolutional brain multiplexes and multi-view brain networks for early dementia diagnosis. In: Wu, G., Laurienti, P., Bonilha, L., Munsell, B.C. (eds.) CNI 2017. LNCS, vol. 10511, pp. 42–50. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-67159-8_6CrossRef Lisowska, A., Rekik, I.: Pairing-based ensemble classifier learning using convolutional brain multiplexes and multi-view brain networks for early dementia diagnosis. In: Wu, G., Laurienti, P., Bonilha, L., Munsell, B.C. (eds.) CNI 2017. LNCS, vol. 10511, pp. 42–50. Springer, Cham (2017). https://​doi.​org/​10.​1007/​978-3-319-67159-8_​6CrossRef
10.
Zurück zum Zitat Wen, H., et al.: Combining disrupted and discriminative topological properties of functional connectivity networks as neuroimaging biomarkers for accurate diagnosis of early tourette syndrome children. Mol. Neurobiol. 55, 3251–3269 (2018)CrossRef Wen, H., et al.: Combining disrupted and discriminative topological properties of functional connectivity networks as neuroimaging biomarkers for accurate diagnosis of early tourette syndrome children. Mol. Neurobiol. 55, 3251–3269 (2018)CrossRef
11.
Zurück zum Zitat Kalousis, A., Prados, J., Hilario, M.: Stability of feature selection algorithms: a study on high-dimensional spaces. Knowl. Inf. Syst. 12, 95–116 (2007)CrossRef Kalousis, A., Prados, J., Hilario, M.: Stability of feature selection algorithms: a study on high-dimensional spaces. Knowl. Inf. Syst. 12, 95–116 (2007)CrossRef
12.
Zurück zum Zitat Lustgarten, J.L., Gopalakrishnan, V., Visweswaran, S.: Measuring stability of feature selection in biomedical datasets. In: AMIA Annual Symposium Proceedings, vol. 2009, p. 406. American Medical Informatics Association (2009) Lustgarten, J.L., Gopalakrishnan, V., Visweswaran, S.: Measuring stability of feature selection in biomedical datasets. In: AMIA Annual Symposium Proceedings, vol. 2009, p. 406. American Medical Informatics Association (2009)
14.
Zurück zum Zitat Mueller, S.G.: The alzheimer’s disease neuroimaging initiative. Neuroimaging Clin. North Am. 10, 869–877 (2005)CrossRef Mueller, S.G.: The alzheimer’s disease neuroimaging initiative. Neuroimaging Clin. North Am. 10, 869–877 (2005)CrossRef
15.
Zurück zum Zitat Fischl, B.: Automatically parcellating the human cerebral cortex. Cereb. Cortex 14, 11–22 (2004)CrossRef Fischl, B.: Automatically parcellating the human cerebral cortex. Cereb. Cortex 14, 11–22 (2004)CrossRef
17.
Zurück zum Zitat Kononenko, I., Šimec, E., Robnik-Šikonja, M.: Overcoming the myopia of inductive learning algorithms with RELIEFF. Appl. Intell. 7, 39–55 (1997)CrossRef Kononenko, I., Šimec, E., Robnik-Šikonja, M.: Overcoming the myopia of inductive learning algorithms with RELIEFF. Appl. Intell. 7, 39–55 (1997)CrossRef
18.
Zurück zum Zitat Estévez, P.A., Tesmer, M., Perez, C.A., Zurada, J.M.: Normalized mutual information feature selection. IEEE Trans. Neural Netw. 20, 189–201 (2009)CrossRef Estévez, P.A., Tesmer, M., Perez, C.A., Zurada, J.M.: Normalized mutual information feature selection. IEEE Trans. Neural Netw. 20, 189–201 (2009)CrossRef
19.
Zurück zum Zitat He, X., Cai, D., Niyogi, P.: Laplacian score for feature selection. In: Advances in Neural Information Processing Systems, pp. 507–514 (2006) He, X., Cai, D., Niyogi, P.: Laplacian score for feature selection. In: Advances in Neural Information Processing Systems, pp. 507–514 (2006)
20.
Zurück zum Zitat Han, J., Sun, Z., Hao, H.: l0-norm based structural sparse least square regression for feature selection. Pattern Recogn. 48, 3927–3940 (2015)CrossRef Han, J., Sun, Z., Hao, H.: l0-norm based structural sparse least square regression for feature selection. Pattern Recogn. 48, 3927–3940 (2015)CrossRef
21.
Zurück zum Zitat Yang, Y., Shen, H.T., Ma, Z., Huang, Z., Zhou, X.: l2, 1-norm regularized discriminative feature selection for unsupervised learning. In: IJCAI Proceedings-International Joint Conference on Artificial Intelligence, vol. 22, p. 1589 (2011) Yang, Y., Shen, H.T., Ma, Z., Huang, Z., Zhou, X.: l2, 1-norm regularized discriminative feature selection for unsupervised learning. In: IJCAI Proceedings-International Joint Conference on Artificial Intelligence, vol. 22, p. 1589 (2011)
22.
Zurück zum Zitat Zeng, H., Cheung, Y.m.: Feature selection and kernel learning for local learning-based clustering. IEEE Trans. Patt. Anal. Mach. Intell. 33, 1532–1547 (2011) Zeng, H., Cheung, Y.m.: Feature selection and kernel learning for local learning-based clustering. IEEE Trans. Patt. Anal. Mach. Intell. 33, 1532–1547 (2011)
23.
Zurück zum Zitat Hall, M.A.: Correlation-based feature selection for machine learning (1999) Hall, M.A.: Correlation-based feature selection for machine learning (1999)
24.
Zurück zum Zitat Wee, C.Y., Yap, P.T., Shen, D., Initiative, A.D.N.: Prediction of Alzheimer’s disease and mild cognitive impairment using cortical morphological patterns. Hum. Brain Mapp. 34, 3411–3425 (2013)CrossRef Wee, C.Y., Yap, P.T., Shen, D., Initiative, A.D.N.: Prediction of Alzheimer’s disease and mild cognitive impairment using cortical morphological patterns. Hum. Brain Mapp. 34, 3411–3425 (2013)CrossRef
Metadaten
Titel
Data-Specific Feature Selection Method Identification for Most Reproducible Connectomic Feature Discovery Fingerprinting Brain States
verfasst von
Nicolas Georges
Islem Rekik
for the Alzheimers’s Disease Neuroimaging Initiative
Copyright-Jahr
2018
DOI
https://doi.org/10.1007/978-3-030-00755-3_11