Skip to main content
Erschienen in: Neural Computing and Applications 7/2020

12.10.2018 | Original Article

DC–DC converters design using a type-2 wavelet fuzzy cerebellar model articulation controller

verfasst von: Chih-Min Lin, Van-Hoa La, Tien-Loc Le

Erschienen in: Neural Computing and Applications | Ausgabe 7/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Recently, boost and buck converters are widely applied in many applications, especially in recycled energy industry. The efficiency of DC–DC converter, which can increase or decrease the input voltage according to the driver output voltage, can effectively affect the total efficiency of the systems. In this paper, a sliding mode interval type-2 fuzzy wavelet cerebellar model articulation controller (T2WFCMAC)-based control system is designed for the DC–DC converters. The proposed control system contains a main controller and a robust compensation controller. The main controller is the T2WFCMAC which is used to mimic an ideal controller, and the robust compensation is designed to compensate for the approximation error between the main controller and the ideal controller. The sliding hyperplane is applied to improve the robustness of the control system. All the adaptive laws for adjusting the parameters of T2WFCMAC are obtained using the gradient descent method. The stability of control system is guaranteed in the sense of Lyapunov function. Finally, numerical experimental results of boost and buck converters are presented to illustrate the effectiveness of the proposed approach under the change in the input voltage and the load resistance variations.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Lin P-Z, Lin C-M, Hsu C-F, Lee T-T (2005) Type-2 fuzzy controller design using a sliding-mode approach for application to DC–DC converters. IEE Proc Electr Power Appl 152(6):1482–1488CrossRef Lin P-Z, Lin C-M, Hsu C-F, Lee T-T (2005) Type-2 fuzzy controller design using a sliding-mode approach for application to DC–DC converters. IEE Proc Electr Power Appl 152(6):1482–1488CrossRef
2.
Zurück zum Zitat Lee Y-J, Khaligh A, Emadi A (2009) A compensation technique for smooth transitions in a noninverting buck–boost converter. IEEE Trans Power Electron 24(4):1002–1015CrossRef Lee Y-J, Khaligh A, Emadi A (2009) A compensation technique for smooth transitions in a noninverting buck–boost converter. IEEE Trans Power Electron 24(4):1002–1015CrossRef
3.
Zurück zum Zitat Wu T-F, Lai Y-S, Hung J-C, Chen Y-M (2008) Boost converter with coupled inductors and buck–boost type of active clamp. IEEE Trans Ind Electron 55(1):154–162CrossRef Wu T-F, Lai Y-S, Hung J-C, Chen Y-M (2008) Boost converter with coupled inductors and buck–boost type of active clamp. IEEE Trans Ind Electron 55(1):154–162CrossRef
4.
Zurück zum Zitat Alonso JM, Viña J, Vaquero DG, Martínez G, Osorio R (2012) Analysis and design of the integrated double buck–boost converter as a high-power-factor driver for power-LED lamps. IEEE Trans Ind Electron 59(4):1689–1697CrossRef Alonso JM, Viña J, Vaquero DG, Martínez G, Osorio R (2012) Analysis and design of the integrated double buck–boost converter as a high-power-factor driver for power-LED lamps. IEEE Trans Ind Electron 59(4):1689–1697CrossRef
5.
Zurück zum Zitat Bharadwaj P, John V (2017) High performance buck–boost converter based PV characterisation set-up. In: Proceedings of ECCE, pp 4425–4432 Bharadwaj P, John V (2017) High performance buck–boost converter based PV characterisation set-up. In: Proceedings of ECCE, pp 4425–4432
6.
Zurück zum Zitat Vivek P, Ayshwarya R, Amali SJ, Sree AN (2016) A novel approach on MPPT algorithm for solar panel using buck boost converter. In: Proceedings of ICEETS, pp 396–399 Vivek P, Ayshwarya R, Amali SJ, Sree AN (2016) A novel approach on MPPT algorithm for solar panel using buck boost converter. In: Proceedings of ICEETS, pp 396–399
7.
Zurück zum Zitat Deniz E (2017) ANN-based MPPT algorithm for solar PMSM drive system fed by direct-connected PV array. Neural Comput Appl 28(10):3061–3072CrossRef Deniz E (2017) ANN-based MPPT algorithm for solar PMSM drive system fed by direct-connected PV array. Neural Comput Appl 28(10):3061–3072CrossRef
8.
Zurück zum Zitat Oshaba A, Ali E, Elazim SA (2017) PI controller design for MPPT of photovoltaic system supplying SRM via BAT search algorithm. Neural Comput Appl 28(4):651–667CrossRef Oshaba A, Ali E, Elazim SA (2017) PI controller design for MPPT of photovoltaic system supplying SRM via BAT search algorithm. Neural Comput Appl 28(4):651–667CrossRef
9.
Zurück zum Zitat Wang F, Wu X, Lee FC, Wang Z, Kong P, Zhuo F (2014) Analysis of unified output MPPT control in subpanel PV converter system. IEEE Trans Power Electron 29(3):1275–1284CrossRef Wang F, Wu X, Lee FC, Wang Z, Kong P, Zhuo F (2014) Analysis of unified output MPPT control in subpanel PV converter system. IEEE Trans Power Electron 29(3):1275–1284CrossRef
10.
Zurück zum Zitat Yu G, Chew KWR, Sun ZC, Tang H, Siek L (2015) A 400 nW single-inductor dual-input-tri-output DC–DC buck–boost converter with maximum power point tracking for indoor photovoltaic energy harvesting. IEEE J Solid State Circuits 50(11):2758–2772CrossRef Yu G, Chew KWR, Sun ZC, Tang H, Siek L (2015) A 400 nW single-inductor dual-input-tri-output DC–DC buck–boost converter with maximum power point tracking for indoor photovoltaic energy harvesting. IEEE J Solid State Circuits 50(11):2758–2772CrossRef
11.
Zurück zum Zitat Sreekanth T, Lakshminarasamma N, Mishra MK (2017) A single-stage grid-connected high gain buck–boost inverter with maximum power point tracking. IEEE Trans Energy Convers 32(1):330–339CrossRef Sreekanth T, Lakshminarasamma N, Mishra MK (2017) A single-stage grid-connected high gain buck–boost inverter with maximum power point tracking. IEEE Trans Energy Convers 32(1):330–339CrossRef
12.
Zurück zum Zitat Agostinelli M, Priewasser R, Marsili S, Huemer M (2011) Fixed-frequency pseudo sliding mode control for a buck–boost DC–DC converter in mobile applications: a comparison with a linear PID controller. In: Proceedings of ISCAS, pp 1604–1607 Agostinelli M, Priewasser R, Marsili S, Huemer M (2011) Fixed-frequency pseudo sliding mode control for a buck–boost DC–DC converter in mobile applications: a comparison with a linear PID controller. In: Proceedings of ISCAS, pp 1604–1607
13.
Zurück zum Zitat Cheng K-H, Hsu C-F, Lin C-M, Lee T-T, Li C (2007) Fuzzy-neural sliding-mode control for DC–DC converters using asymmetric Gaussian membership functions. IEEE Trans Ind Electron 54(3):1528–1536CrossRef Cheng K-H, Hsu C-F, Lin C-M, Lee T-T, Li C (2007) Fuzzy-neural sliding-mode control for DC–DC converters using asymmetric Gaussian membership functions. IEEE Trans Ind Electron 54(3):1528–1536CrossRef
14.
Zurück zum Zitat Kumbhojkar A, Patel N, Kumbhojkar A (2014) A novel sliding mode control technique for DC to DC buck converter. In: Proceedings of ICCPCT, pp 881–886 Kumbhojkar A, Patel N, Kumbhojkar A (2014) A novel sliding mode control technique for DC to DC buck converter. In: Proceedings of ICCPCT, pp 881–886
15.
Zurück zum Zitat Cheng L, Acuna P, Aguilera RP, Ciobotaru M, Jiang J (2016) Model predictive control for DC–DC boost converters with constant switching frequency. In: Proceedings of SPEC, pp 1–6 Cheng L, Acuna P, Aguilera RP, Ciobotaru M, Jiang J (2016) Model predictive control for DC–DC boost converters with constant switching frequency. In: Proceedings of SPEC, pp 1–6
16.
Zurück zum Zitat Albus JS (1975) A new approach to manipulator control: the cerebellar model articulation controller (CMAC). J Dyn Syst Meas Control 97(3):220–227CrossRef Albus JS (1975) A new approach to manipulator control: the cerebellar model articulation controller (CMAC). J Dyn Syst Meas Control 97(3):220–227CrossRef
17.
Zurück zum Zitat Lin C-M, Lin M-H, Yeh R-G (2013) Synchronization of unified chaotic system via adaptive wavelet cerebellar model articulation controller. Neural Comput Appl 23(3–4):965–973CrossRef Lin C-M, Lin M-H, Yeh R-G (2013) Synchronization of unified chaotic system via adaptive wavelet cerebellar model articulation controller. Neural Comput Appl 23(3–4):965–973CrossRef
18.
Zurück zum Zitat Lin C-M, Chen T-Y (2009) Self-organizing CMAC control for a class of MIMO uncertain nonlinear systems. IEEE Trans Neural Netw 20(9):1377–1384CrossRef Lin C-M, Chen T-Y (2009) Self-organizing CMAC control for a class of MIMO uncertain nonlinear systems. IEEE Trans Neural Netw 20(9):1377–1384CrossRef
19.
Zurück zum Zitat Lin C-M, Le T-L (2017) WCMAC-based control system design for nonlinear systems using PSO. J Intell Fuzzy Syst 33(2):807–818CrossRef Lin C-M, Le T-L (2017) WCMAC-based control system design for nonlinear systems using PSO. J Intell Fuzzy Syst 33(2):807–818CrossRef
20.
Zurück zum Zitat Lin C-M, Yang M-S, Chao F, Hu X-M, Zhang J (2016) Adaptive filter design using type-2 fuzzy cerebellar model articulation controller. IEEE Trans Neural Netw Learn Syst 27(10):2084–2094MathSciNetCrossRef Lin C-M, Yang M-S, Chao F, Hu X-M, Zhang J (2016) Adaptive filter design using type-2 fuzzy cerebellar model articulation controller. IEEE Trans Neural Netw Learn Syst 27(10):2084–2094MathSciNetCrossRef
21.
Zurück zum Zitat Lu H-C, Chuang C-Y (2011) Robust parametric CMAC with self-generating design for uncertain nonlinear systems. Neurocomputing 74(4):549–562CrossRef Lu H-C, Chuang C-Y (2011) Robust parametric CMAC with self-generating design for uncertain nonlinear systems. Neurocomputing 74(4):549–562CrossRef
22.
Zurück zum Zitat Lin C-M, Li H-Y (2013) Intelligent hybrid control system design for antilock braking systems using self-organizing function-link fuzzy cerebellar model articulation controller. IEEE Trans Fuzzy Syst 21(6):1044–1055CrossRef Lin C-M, Li H-Y (2013) Intelligent hybrid control system design for antilock braking systems using self-organizing function-link fuzzy cerebellar model articulation controller. IEEE Trans Fuzzy Syst 21(6):1044–1055CrossRef
23.
Zurück zum Zitat Wang J-G, Tai S-C, Lin C-J (2014) Medical diagnosis applications using a novel interactively recurrent self-evolving fuzzy CMAC model. In: Proceedings of IJCNN, pp 4092–4098 Wang J-G, Tai S-C, Lin C-J (2014) Medical diagnosis applications using a novel interactively recurrent self-evolving fuzzy CMAC model. In: Proceedings of IJCNN, pp 4092–4098
24.
Zurück zum Zitat Zadeh LA (1975) The concept of a linguistic variable and its application to approximate reasoning—I. Inf Sci 8(3):199–249MathSciNetCrossRef Zadeh LA (1975) The concept of a linguistic variable and its application to approximate reasoning—I. Inf Sci 8(3):199–249MathSciNetCrossRef
25.
Zurück zum Zitat Liang Q, Mendel JM (2000) Interval type-2 fuzzy logic systems: theory and design. IEEE Trans Fuzzy Syst 8(5):535–550CrossRef Liang Q, Mendel JM (2000) Interval type-2 fuzzy logic systems: theory and design. IEEE Trans Fuzzy Syst 8(5):535–550CrossRef
26.
Zurück zum Zitat Wu D (2013) Two differences between interval type-2 and type-1 fuzzy logic controllers: adaptiveness and novelty. In: Sadeghian A, Mendel J, Tahayori H (eds) Advances in type-2 fuzzy sets and systems. Springer, New York, pp 33–48CrossRef Wu D (2013) Two differences between interval type-2 and type-1 fuzzy logic controllers: adaptiveness and novelty. In: Sadeghian A, Mendel J, Tahayori H (eds) Advances in type-2 fuzzy sets and systems. Springer, New York, pp 33–48CrossRef
27.
Zurück zum Zitat Wu Dongrui (2012) On the fundamental differences between interval type-2 and type-1 fuzzy logic controllers. IEEE Trans Fuzzy Syst 20(5):832–848CrossRef Wu Dongrui (2012) On the fundamental differences between interval type-2 and type-1 fuzzy logic controllers. IEEE Trans Fuzzy Syst 20(5):832–848CrossRef
28.
Zurück zum Zitat Zhang Z (2018) Trapezoidal interval type-2 fuzzy aggregation operators and their application to multiple attribute group decision making. Neural Comput Appl 29(4):1039–1054CrossRef Zhang Z (2018) Trapezoidal interval type-2 fuzzy aggregation operators and their application to multiple attribute group decision making. Neural Comput Appl 29(4):1039–1054CrossRef
29.
Zurück zum Zitat Mohagheghi V, Mousavi SM, Vahdani B (2017) Analyzing project cash flow by a new interval type-2 fuzzy model with an application to construction industry. Neural Comput Appl 28(11):3393–3411CrossRef Mohagheghi V, Mousavi SM, Vahdani B (2017) Analyzing project cash flow by a new interval type-2 fuzzy model with an application to construction industry. Neural Comput Appl 28(11):3393–3411CrossRef
31.
Zurück zum Zitat Hsu C-F, Lin C-M, Lee T-T (2006) Wavelet adaptive backstepping control for a class of nonlinear systems. IEEE Trans Neural Netw 17(5):1175–1183CrossRef Hsu C-F, Lin C-M, Lee T-T (2006) Wavelet adaptive backstepping control for a class of nonlinear systems. IEEE Trans Neural Netw 17(5):1175–1183CrossRef
32.
Zurück zum Zitat Mai T, Wang Y (2014) Adaptive force/motion control system based on recurrent fuzzy wavelet CMAC neural networks for condenser cleaning crawler-type mobile manipulator robot. IEEE Trans Control Syst Technol 22(5):1973–1982CrossRef Mai T, Wang Y (2014) Adaptive force/motion control system based on recurrent fuzzy wavelet CMAC neural networks for condenser cleaning crawler-type mobile manipulator robot. IEEE Trans Control Syst Technol 22(5):1973–1982CrossRef
33.
Zurück zum Zitat Wai R-J, Duan R-Y, Lee J-D, Chang H-H (2003) Wavelet neural network control for induction motor drive using sliding-mode design technique. IEEE Trans Ind Electron 50(4):733–748CrossRef Wai R-J, Duan R-Y, Lee J-D, Chang H-H (2003) Wavelet neural network control for induction motor drive using sliding-mode design technique. IEEE Trans Ind Electron 50(4):733–748CrossRef
34.
Zurück zum Zitat Yang J, Li S, Yu X (2013) Sliding-mode control for systems with mismatched uncertainties via a disturbance observer. IEEE Trans Ind Electron 60(1):160–169CrossRef Yang J, Li S, Yu X (2013) Sliding-mode control for systems with mismatched uncertainties via a disturbance observer. IEEE Trans Ind Electron 60(1):160–169CrossRef
35.
Zurück zum Zitat Yu X, Kaynak O (2009) Sliding-mode control with soft computing: a survey. IEEE Trans Ind Electron 56(9):3275–3285CrossRef Yu X, Kaynak O (2009) Sliding-mode control with soft computing: a survey. IEEE Trans Ind Electron 56(9):3275–3285CrossRef
36.
Zurück zum Zitat Yu X, Wang B, Li X (2012) Computer-controlled variable structure systems: the state-of-the-art. IEEE Trans Ind Inf 8(2):197–205CrossRef Yu X, Wang B, Li X (2012) Computer-controlled variable structure systems: the state-of-the-art. IEEE Trans Ind Inf 8(2):197–205CrossRef
37.
Zurück zum Zitat Wang J, Gao Y, Qiu J, Ahn CK (2016) Sliding mode control for non-linear systems by Takagi–Sugeno fuzzy model and delta operator approaches. IET Control Theory Appl 11(8):1205–1213MathSciNetCrossRef Wang J, Gao Y, Qiu J, Ahn CK (2016) Sliding mode control for non-linear systems by Takagi–Sugeno fuzzy model and delta operator approaches. IET Control Theory Appl 11(8):1205–1213MathSciNetCrossRef
38.
Zurück zum Zitat Morkoç C, Önal Y, Kesler M (2014) DSP based embedded code generation for PMSM using sliding mode controller. In: Proceedings of PEMC, pp 472–476 Morkoç C, Önal Y, Kesler M (2014) DSP based embedded code generation for PMSM using sliding mode controller. In: Proceedings of PEMC, pp 472–476
39.
Zurück zum Zitat Yadegari H, Chao H, Yukai Z (2016) Finite time sliding mode controller for a rigid satellite in presence of actuator failure. In: Proceedings of ICISCE), pp 1327–1331 Yadegari H, Chao H, Yukai Z (2016) Finite time sliding mode controller for a rigid satellite in presence of actuator failure. In: Proceedings of ICISCE), pp 1327–1331
40.
Zurück zum Zitat Ding S, Li S (2017) Second-order sliding mode controller design subject to mismatched term. Automatica 77:388–392MathSciNetCrossRef Ding S, Li S (2017) Second-order sliding mode controller design subject to mismatched term. Automatica 77:388–392MathSciNetCrossRef
41.
Zurück zum Zitat Umamaheswari M, Uma G, Vijayalakshmi K (2011) Design and implementation of reduced-order sliding mode controller for higher-order power factor correction converters. IET Power Electron 4(9):984–992CrossRef Umamaheswari M, Uma G, Vijayalakshmi K (2011) Design and implementation of reduced-order sliding mode controller for higher-order power factor correction converters. IET Power Electron 4(9):984–992CrossRef
42.
Zurück zum Zitat Cuk S, Middlebrook R (1983) Advances in switched-mode power conversion part I. IEEE Trans Ind Electron 30(1):10–19CrossRef Cuk S, Middlebrook R (1983) Advances in switched-mode power conversion part I. IEEE Trans Ind Electron 30(1):10–19CrossRef
43.
Zurück zum Zitat Krein PT, Bentsman J, Bass RM, Lesieutre BL (1990) On the use of averaging for the analysis of power electronic systems. IEEE Trans Power Electron 5(2):182–190CrossRef Krein PT, Bentsman J, Bass RM, Lesieutre BL (1990) On the use of averaging for the analysis of power electronic systems. IEEE Trans Power Electron 5(2):182–190CrossRef
44.
Zurück zum Zitat Slotine J-JE, Li W (1991) Applied nonlinear control, vol 199. Prentice Hall, Englewood CliffsMATH Slotine J-JE, Li W (1991) Applied nonlinear control, vol 199. Prentice Hall, Englewood CliffsMATH
45.
Zurück zum Zitat Lin C-M, Chen Y-M, Hsueh C-S (2014) A self-organizing interval type-2 fuzzy neural network for eadar emitter identification. Int J Fuzzy Syst 16(1):120–130 Lin C-M, Chen Y-M, Hsueh C-S (2014) A self-organizing interval type-2 fuzzy neural network for eadar emitter identification. Int J Fuzzy Syst 16(1):120–130
Metadaten
Titel
DC–DC converters design using a type-2 wavelet fuzzy cerebellar model articulation controller
verfasst von
Chih-Min Lin
Van-Hoa La
Tien-Loc Le
Publikationsdatum
12.10.2018
Verlag
Springer London
Erschienen in
Neural Computing and Applications / Ausgabe 7/2020
Print ISSN: 0941-0643
Elektronische ISSN: 1433-3058
DOI
https://doi.org/10.1007/s00521-018-3755-z

Weitere Artikel der Ausgabe 7/2020

Neural Computing and Applications 7/2020 Zur Ausgabe

Deep Learning & Neural Computing for Intelligent Sensing and Control

Deep Refinement: capsule network with attention mechanism-based system for text classification

Deep Learning & Neural Computing for Intelligent Sensing and Control

An emotion classification algorithm based on SPT-CapsNet

Premium Partner