Skip to main content
Erschienen in: Cognitive Computation 2/2014

01.06.2014

Decoding Word Information from Spatiotemporal Activity of Sensory Neurons

verfasst von: Kazuhisa Fujita, Yusuke Hara, Youichi Suzukawa, Yoshiki Kashimori

Erschienen in: Cognitive Computation | Ausgabe 2/2014

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Spatiotemporal activity of neurons is ubiquitous in sensory coding in the CNS. It is a fundamental problem for sensory perception to understand how sensory information is decoded from the spatiotemporal activity. However, little is known about the decoding mechanism. To address this issue, we are concerned with auditory system as a model system exhibiting spatiotemporal activity. We present here a model of auditory cortex, which performs a hierarchical processing of auditory information. The model consists of three layers of two-dimensional networks. The first layer represents auditory stimulus as a spatiotemporal activity of neurons. The second layer consists of feature-detecting neurons, which extract the features of phonemes and their overlaps from the spatiotemporal activity of the first layer. The third layer combines information of the sound features encoded by the second layer and decodes word information about the sound stimulus as a temporal sequence of attractors. Using the model, we show how the information of phonemes and words emerge in the hierarchical processing of the auditory cortex. We also show that the overlap between phonemes plays a crucial role in linking the attractors of phonemes. The present study may provide a clue for understanding the mechanism by which word information is decoded from spatiotemporal activity of neurons.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Ahissar E, Zacksenhouse M. Temporal and spatial coding in the rat vibrissal system. Prog Brain Res. 2001;130:75–87.PubMedCrossRef Ahissar E, Zacksenhouse M. Temporal and spatial coding in the rat vibrissal system. Prog Brain Res. 2001;130:75–87.PubMedCrossRef
2.
Zurück zum Zitat Barak O, Tsodyks M. Recognition by variance: learning rules for spatiotemporal patterns. Neural Comput. 2006;18:2343–58.PubMedCrossRef Barak O, Tsodyks M. Recognition by variance: learning rules for spatiotemporal patterns. Neural Comput. 2006;18:2343–58.PubMedCrossRef
3.
Zurück zum Zitat Bregman AS, Campbell J. Primary auditory stream segregation and perception of order in rapid sequences of tones. J Exp Psychol. 1971;89:244–9.PubMedCrossRef Bregman AS, Campbell J. Primary auditory stream segregation and perception of order in rapid sequences of tones. J Exp Psychol. 1971;89:244–9.PubMedCrossRef
4.
Zurück zum Zitat Bregman AS. Auditory scene analysis: the perceptual organization of sound. Cambridge: A Bradford Book; 1994. Bregman AS. Auditory scene analysis: the perceptual organization of sound. Cambridge: A Bradford Book; 1994.
5.
Zurück zum Zitat Buonomano DV, Merzenich MM. Temporal information transformed into a spatial code by a neural network with realistic properties. Science. 1995;267:1028–30.PubMedCrossRef Buonomano DV, Merzenich MM. Temporal information transformed into a spatial code by a neural network with realistic properties. Science. 1995;267:1028–30.PubMedCrossRef
6.
Zurück zum Zitat Chang EF, Rieger JW, Johnson K, Berger MS, Barbaro NM, Knight RT. Categorical speech representation in human superior temporal gyrus. Nat Neurosci. 2010;13:1428–32.PubMedCentralPubMedCrossRef Chang EF, Rieger JW, Johnson K, Berger MS, Barbaro NM, Knight RT. Categorical speech representation in human superior temporal gyrus. Nat Neurosci. 2010;13:1428–32.PubMedCentralPubMedCrossRef
7.
8.
Zurück zum Zitat DeAngelis GC, Ohzawa I, Freeman RD. Spatiotemporal organization of simple-cell receptive fields in the cat’s striate cortex II linearity of temporal and spatial summation. J Neurophysiol. 1993;69:1118–35.PubMed DeAngelis GC, Ohzawa I, Freeman RD. Spatiotemporal organization of simple-cell receptive fields in the cat’s striate cortex II linearity of temporal and spatial summation. J Neurophysiol. 1993;69:1118–35.PubMed
9.
Zurück zum Zitat deCharms R, Blake D, Merzenich M. Optimizing sound features for cortical neurons. Science. 1998;280:1439–43.PubMedCrossRef deCharms R, Blake D, Merzenich M. Optimizing sound features for cortical neurons. Science. 1998;280:1439–43.PubMedCrossRef
11.
Zurück zum Zitat Drullman R. Temporal envelope and fine structure cues for speech intelligibility. J Acoust Soc Am. 1995;97:585–92.PubMedCrossRef Drullman R. Temporal envelope and fine structure cues for speech intelligibility. J Acoust Soc Am. 1995;97:585–92.PubMedCrossRef
12.
Zurück zum Zitat Fishman YI, Resera DH, Arezzoa JC, Steinschneidera M. Neural correlates of auditory stream segregation in primary auditory cortex of the awake monkey. Hear Res. 2001;151:167–87.PubMedCrossRef Fishman YI, Resera DH, Arezzoa JC, Steinschneidera M. Neural correlates of auditory stream segregation in primary auditory cortex of the awake monkey. Hear Res. 2001;151:167–87.PubMedCrossRef
13.
Zurück zum Zitat Freiwald WA, Tsao DY. Functional compartmentalization and viewpoint generalization within the macaque face-processing system. Science. 2010;330:845–51.PubMedCentralPubMedCrossRef Freiwald WA, Tsao DY. Functional compartmentalization and viewpoint generalization within the macaque face-processing system. Science. 2010;330:845–51.PubMedCentralPubMedCrossRef
14.
Zurück zum Zitat Fowler CA. Segmentation of coarticulated speech in perception. Percept Psychophys. 1984;36:359–68.PubMedCrossRef Fowler CA. Segmentation of coarticulated speech in perception. Percept Psychophys. 1984;36:359–68.PubMedCrossRef
15.
Zurück zum Zitat Fujita K, Kashimori Y, Kambara T. Spatiotemporal burst coding for extracting features of spatiotemporally varying stimuli. Biol Cybern. 2007;97:293–305.PubMedCrossRef Fujita K, Kashimori Y, Kambara T. Spatiotemporal burst coding for extracting features of spatiotemporally varying stimuli. Biol Cybern. 2007;97:293–305.PubMedCrossRef
16.
Zurück zum Zitat Fukunishi K, Murai N, Uno H. Dynamic characteristics of the auditory cortex of guinea pigs observed with multichannel optical recording. Biol Cybern. 1992;67:501–9.PubMedCrossRef Fukunishi K, Murai N, Uno H. Dynamic characteristics of the auditory cortex of guinea pigs observed with multichannel optical recording. Biol Cybern. 1992;67:501–9.PubMedCrossRef
17.
Zurück zum Zitat Fukunishi K, Murai N. Temporal coding in the guinea-pig auditory cortex as revealed by optical imaging and its pattern-time-series analysis. Biol Cybern. 1995;72:463–73.PubMedCrossRef Fukunishi K, Murai N. Temporal coding in the guinea-pig auditory cortex as revealed by optical imaging and its pattern-time-series analysis. Biol Cybern. 1995;72:463–73.PubMedCrossRef
18.
Zurück zum Zitat Gerstner W, Kempter R, Hemmen JL, Wagner H. A neuronal learning rule for sub-millisecond temporal coding. Nature. 1996;383:76–81.PubMedCrossRef Gerstner W, Kempter R, Hemmen JL, Wagner H. A neuronal learning rule for sub-millisecond temporal coding. Nature. 1996;383:76–81.PubMedCrossRef
19.
Zurück zum Zitat Ghitza O. Linking speech perception and neurophysiology: speech decoding guided by cascaded oscillators locked to the input rhythm. Front Psychol. 2011;2:130.PubMedCentralPubMedCrossRef Ghitza O. Linking speech perception and neurophysiology: speech decoding guided by cascaded oscillators locked to the input rhythm. Front Psychol. 2011;2:130.PubMedCentralPubMedCrossRef
20.
Zurück zum Zitat Horikawa J, Hosokawa Y, Kubota M, Nasu M, Taniguchi I. Optical imaging of spatiotemporal patterns of glutamatergic excitation and GABAergic inhibition in the guinea-pig auditory cortex in vivo. J Physiol. 1996;497:629–38.PubMedCentralPubMed Horikawa J, Hosokawa Y, Kubota M, Nasu M, Taniguchi I. Optical imaging of spatiotemporal patterns of glutamatergic excitation and GABAergic inhibition in the guinea-pig auditory cortex in vivo. J Physiol. 1996;497:629–38.PubMedCentralPubMed
21.
Zurück zum Zitat Izhikevich EM. Solving the distal reward problem through linkage of STDP and dopamine signaling. Cereb Cortex. 2007;17:2443–52.PubMedCrossRef Izhikevich EM. Solving the distal reward problem through linkage of STDP and dopamine signaling. Cereb Cortex. 2007;17:2443–52.PubMedCrossRef
22.
Zurück zum Zitat Jaeger H, Haas H. Harnessing nonlinearity: predicting chaotic systems and saving energy in wireless communication. Science. 2004;304:78–80.PubMedCrossRef Jaeger H, Haas H. Harnessing nonlinearity: predicting chaotic systems and saving energy in wireless communication. Science. 2004;304:78–80.PubMedCrossRef
23.
Zurück zum Zitat Karmarkar UR, Najarian MT, Buonomano DV. Mechanisms and significance of spike-timing dependent plasticity. Biol Cybern. 2002;87:373–382.PubMedCrossRef Karmarkar UR, Najarian MT, Buonomano DV. Mechanisms and significance of spike-timing dependent plasticity. Biol Cybern. 2002;87:373–382.PubMedCrossRef
24.
Zurück zum Zitat Knüsel P, Wyss R, König P, Verschure PFMJ. Decoding a temporal population code. Neural Comput. 2004;16:2079–2100. Knüsel P, Wyss R, König P, Verschure PFMJ. Decoding a temporal population code. Neural Comput. 2004;16:2079–2100.
25.
Zurück zum Zitat Koch C. Biophysics of computation: information processing in single neurons (computational neuroscience). 1st ed. Oxford: Oxford University Press; 1998. Koch C. Biophysics of computation: information processing in single neurons (computational neuroscience). 1st ed. Oxford: Oxford University Press; 1998.
26.
27.
Zurück zum Zitat Laurent G. Olfactory network dynamics and the coding of multidimensional signals. Nat Rev Neurosci. 2002;3:884–95.PubMedCrossRef Laurent G. Olfactory network dynamics and the coding of multidimensional signals. Nat Rev Neurosci. 2002;3:884–95.PubMedCrossRef
28.
Zurück zum Zitat Legenstein R, Pecevski D, Maass W. A learning theory for reward-modulated spike-timing-dependent plasticity with application to biofeedback. PLoS Comput Biol. 2008;4:e1000180.PubMedCentralPubMedCrossRef Legenstein R, Pecevski D, Maass W. A learning theory for reward-modulated spike-timing-dependent plasticity with application to biofeedback. PLoS Comput Biol. 2008;4:e1000180.PubMedCentralPubMedCrossRef
29.
Zurück zum Zitat Liberman AM. The grammars of speech and language. Cogn Psychol. 1970;1:301–23.CrossRef Liberman AM. The grammars of speech and language. Cogn Psychol. 1970;1:301–23.CrossRef
30.
Zurück zum Zitat Maass W, Natschläger T, Markram H. Real-time computing without stable states: a new framework for neural computation based on perturbations. Neural Comput. 2002;14:2531–60.PubMedCrossRef Maass W, Natschläger T, Markram H. Real-time computing without stable states: a new framework for neural computation based on perturbations. Neural Comput. 2002;14:2531–60.PubMedCrossRef
31.
Zurück zum Zitat Mauk MD, Buonomano DV. The neural basis of temporal processing. Annu Rev Neurosci. 2004;27:307–40.PubMedCrossRef Mauk MD, Buonomano DV. The neural basis of temporal processing. Annu Rev Neurosci. 2004;27:307–40.PubMedCrossRef
32.
Zurück zum Zitat Mazor O, Laurent G. Transient dynamics versus fixed points in odor representations by locust antennal lobe projection neurons. Neuron. 2005;48:661–73.PubMedCrossRef Mazor O, Laurent G. Transient dynamics versus fixed points in odor representations by locust antennal lobe projection neurons. Neuron. 2005;48:661–73.PubMedCrossRef
33.
34.
Zurück zum Zitat Nikolic D, Häusler S, Singer W, Maass W. Temporal dynamics of information content carried by neurons in the primary visual cortex. In: Schölkopf B, Platt JC, Hoffman T, editors. Advances in neural information processing systems, vol 19. Vancouver: MIT Press; 2007. p.1041–8. Nikolic D, Häusler S, Singer W, Maass W. Temporal dynamics of information content carried by neurons in the primary visual cortex. In: Schölkopf B, Platt JC, Hoffman T, editors. Advances in neural information processing systems, vol 19. Vancouver: MIT Press; 2007. p.1041–8.
35.
Zurück zum Zitat Rao RPN, Ballard DH. Predictive coding in the visual cortex: a functional interpretation of some extra-classical receptive-field effects. Nat Neurosci. 1999;2:79–87.PubMedCrossRef Rao RPN, Ballard DH. Predictive coding in the visual cortex: a functional interpretation of some extra-classical receptive-field effects. Nat Neurosci. 1999;2:79–87.PubMedCrossRef
36.
Zurück zum Zitat Riesenhuber M, Poggio T. Models of object recognition. Nat Neurosci. 1999;3:1199–203.CrossRef Riesenhuber M, Poggio T. Models of object recognition. Nat Neurosci. 1999;3:1199–203.CrossRef
37.
Zurück zum Zitat Schnupp JWH, Hall TM, Kokelaar RF, Ahmed B. Plasticity of temporal pattern codes for vocalization stimuli in primary auditory cortex. J Neurosci. 2006;26:4785–95.PubMedCrossRef Schnupp JWH, Hall TM, Kokelaar RF, Ahmed B. Plasticity of temporal pattern codes for vocalization stimuli in primary auditory cortex. J Neurosci. 2006;26:4785–95.PubMedCrossRef
38.
Zurück zum Zitat Schnupp J, Nelken I, King A. Auditory neuroscience: making sense of sound. Cambridge: The MIT Press; 2011. Schnupp J, Nelken I, King A. Auditory neuroscience: making sense of sound. Cambridge: The MIT Press; 2011.
39.
Zurück zum Zitat Shannon RV, Zeng F-G, Kamath V, Wygonski J, Ekelid M. Speech recognition with primarily temporal cues. Science. 1995;270:303–4.PubMedCrossRef Shannon RV, Zeng F-G, Kamath V, Wygonski J, Ekelid M. Speech recognition with primarily temporal cues. Science. 1995;270:303–4.PubMedCrossRef
40.
Zurück zum Zitat Song S, Miller KD, Abbott LF. Competitive Hebbian learning through spike-timing-dependent synaptic plasticity. Nat Neurosci. 2000;3:919–26.PubMedCrossRef Song S, Miller KD, Abbott LF. Competitive Hebbian learning through spike-timing-dependent synaptic plasticity. Nat Neurosci. 2000;3:919–26.PubMedCrossRef
42.
Zurück zum Zitat Stevens KN. Toward a model for lexical access based on acoustic landmarks and distinctive features. J Acoust Soc Am. 2002;111:1872–91.PubMedCrossRef Stevens KN. Toward a model for lexical access based on acoustic landmarks and distinctive features. J Acoust Soc Am. 2002;111:1872–91.PubMedCrossRef
43.
44.
Zurück zum Zitat Taniguchi I, Horikawa J, Moriyama T, Nasu M. Spatio-temporal pattern of frequency representation in the auditory cortex of guinea pigs. Neurosci Lett. 1992;146:37–40.PubMedCrossRef Taniguchi I, Horikawa J, Moriyama T, Nasu M. Spatio-temporal pattern of frequency representation in the auditory cortex of guinea pigs. Neurosci Lett. 1992;146:37–40.PubMedCrossRef
45.
Zurück zum Zitat Taniguchi I, Nasu M. Spatio-temporal representation of sound intensity in the guinea pig auditory cortex observed by optical recording. Neurosci Lett. 1993;151:178–81.PubMedCrossRef Taniguchi I, Nasu M. Spatio-temporal representation of sound intensity in the guinea pig auditory cortex observed by optical recording. Neurosci Lett. 1993;151:178–81.PubMedCrossRef
46.
Zurück zum Zitat Theunissen FE, Sen K, Doupe AJ. Spectral-temporal receptive fields of nonlinear auditory neurons obtained using natural sounds. J Neurosci. 2000;20:2315–31.PubMed Theunissen FE, Sen K, Doupe AJ. Spectral-temporal receptive fields of nonlinear auditory neurons obtained using natural sounds. J Neurosci. 2000;20:2315–31.PubMed
47.
Zurück zum Zitat Tzounopoulos T, Kim Y, Oertel D, Trussell LO. Cell-specific, spike timing-dependent plasticities in the dorsal cochlear nucleus. Nat Neurosci. 2004;7:719–25.PubMedCrossRef Tzounopoulos T, Kim Y, Oertel D, Trussell LO. Cell-specific, spike timing-dependent plasticities in the dorsal cochlear nucleus. Nat Neurosci. 2004;7:719–25.PubMedCrossRef
48.
Zurück zum Zitat Yamaguchi Y, Horikawa J, Taniguchi I. Neural dynamics of vocal processing in the auditory cortex. In: Poznanski RR, editor. Biophysical neural networks. New York: Mary Ann Liebert; 2001. p. 343–62. Yamaguchi Y, Horikawa J, Taniguchi I. Neural dynamics of vocal processing in the auditory cortex. In: Poznanski RR, editor. Biophysical neural networks. New York: Mary Ann Liebert; 2001. p. 343–62.
Metadaten
Titel
Decoding Word Information from Spatiotemporal Activity of Sensory Neurons
verfasst von
Kazuhisa Fujita
Yusuke Hara
Youichi Suzukawa
Yoshiki Kashimori
Publikationsdatum
01.06.2014
Verlag
Springer US
Erschienen in
Cognitive Computation / Ausgabe 2/2014
Print ISSN: 1866-9956
Elektronische ISSN: 1866-9964
DOI
https://doi.org/10.1007/s12559-013-9240-1

Weitere Artikel der Ausgabe 2/2014

Cognitive Computation 2/2014 Zur Ausgabe

Premium Partner