Skip to main content
Erschienen in: International Journal of Computer Assisted Radiology and Surgery 7/2023

31.05.2023 | Original Article

Deep anatomy learning for lung airway and artery-vein modeling with contrast-enhanced CT synthesis

verfasst von: Hanxiao Zhang, Minghui Zhang, Yun Gu, Guang-Zhong Yang

Erschienen in: International Journal of Computer Assisted Radiology and Surgery | Ausgabe 7/2023

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Purpose

Endobronchial intervention requires detailed modeling of pulmonary anatomical substructure, such as lung airway and artery-vein maps, which are commonly extracted from non-contrast computed tomography (NCCT) independently using automatic segmentation approaches. We aim to make the first attempt to jointly train a CNN-based model for airway and artery-vein segmentation along with synthetic contrast-enhanced CT (CECT) generation.

Methods

A multi-task framework is proposed to simultaneously generate three segmentation maps and synthesize CECTs. We first design a collaborative learning model with tissue knowledge interaction for lung airway and artery-vein segmentation. Meanwhile, a conditional adversarial training strategy is applied to generate CECTs from NCCTs guided by artery maps. Additionally, CECT identity and reconstruction help to regularize the model for plausible NCCT to CECT translation.

Results

Extensive experiments were conducted to evaluate the performance of the proposed framework based on three datasets (90 NCCTs for the airway task, 55 NCCTs for the artery-vein task and 100 CECTs for the artery task). The results demonstrate the effective improvement of our proposed method compared to other methods and configurations that can achieve more accurate segmentation maps (Dice score coefficients for these three tasks are: 93.6%, 80.7% and 82.4%, respectively) and realistic CECTs simultaneously. The ablation study further verifies the effectiveness of the components of the designed model.

Conclusion

This study demonstrates the model potential in multi-task learning that integrates anatomically relevant segmentation and performs NCCT to CECT translation. Such an interaction approach promotes mutually for both promising segmentation results and plausible synthesis.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Gu Y, Gu C, Yang J, Sun J, Yang G-Z (2022) Vision-kinematics interaction for robotic-assisted bronchoscopy navigation. IEEE Trans Med Imaging 41(12):3600–3610CrossRefPubMed Gu Y, Gu C, Yang J, Sun J, Yang G-Z (2022) Vision-kinematics interaction for robotic-assisted bronchoscopy navigation. IEEE Trans Med Imaging 41(12):3600–3610CrossRefPubMed
2.
Zurück zum Zitat Shen M, Gu Y, Liu N, Yang G-Z (2019) Context-aware depth and pose estimation for bronchoscopic navigation. IEEE Robot Autom Lett 4(2):732–739CrossRef Shen M, Gu Y, Liu N, Yang G-Z (2019) Context-aware depth and pose estimation for bronchoscopic navigation. IEEE Robot Autom Lett 4(2):732–739CrossRef
3.
Zurück zum Zitat Fabijanska A (2009) Results of applying two-pass region growing algorithm for airway tree segmentation to MDCT chest scans from EXACT database. In: The 2nd international workshop on pulmonary image analysis, CreateSpace, USA, pp 251–260 Fabijanska A (2009) Results of applying two-pass region growing algorithm for airway tree segmentation to MDCT chest scans from EXACT database. In: The 2nd international workshop on pulmonary image analysis, CreateSpace, USA, pp 251–260
4.
Zurück zum Zitat Zhang M, Zhang H, Yang G-Z, Gu Y (2022) Cfda: Collaborative feature disentanglement and augmentation for pulmonary airway tree modeling of COVID-19 CTs. In: International conference on medical image computing and computer-assisted intervention, pp 506–516. Springer Zhang M, Zhang H, Yang G-Z, Gu Y (2022) Cfda: Collaborative feature disentanglement and augmentation for pulmonary airway tree modeling of COVID-19 CTs. In: International conference on medical image computing and computer-assisted intervention, pp 506–516. Springer
5.
Zurück zum Zitat Meng Q, Roth HR, Kitasaka T, Oda M, Ueno J, Mori K (2017) Tracking and segmentation of the airways in chest CT using a fully convolutional network. In: International conference on medical image computing and computer-assisted intervention, pp 198–207. Springer Meng Q, Roth HR, Kitasaka T, Oda M, Ueno J, Mori K (2017) Tracking and segmentation of the airways in chest CT using a fully convolutional network. In: International conference on medical image computing and computer-assisted intervention, pp 198–207. Springer
6.
Zurück zum Zitat Qin Y, Chen M, Zheng H, Gu Y, Shen M, Yang J, Huang X, Zhu Y-M, Yang G-Z (2019) Airwaynet: a voxel-connectivity aware approach for accurate airway segmentation using convolutional neural networks. In: International conference on medical image computing and computer-assisted intervention, pp 212–220. Springer Qin Y, Chen M, Zheng H, Gu Y, Shen M, Yang J, Huang X, Zhu Y-M, Yang G-Z (2019) Airwaynet: a voxel-connectivity aware approach for accurate airway segmentation using convolutional neural networks. In: International conference on medical image computing and computer-assisted intervention, pp 212–220. Springer
7.
Zurück zum Zitat Garcia-Uceda Juarez A, Selvan R, Saghir, Z, Bruijne Md (2019) A joint 3d UNet-graph neural network-based method for airway segmentation from chest CTs. In: International workshop on machine learning in medical imaging, pp. 583–591. Springer Garcia-Uceda Juarez A, Selvan R, Saghir, Z, Bruijne Md (2019) A joint 3d UNet-graph neural network-based method for airway segmentation from chest CTs. In: International workshop on machine learning in medical imaging, pp. 583–591. Springer
8.
Zurück zum Zitat Charbonnier J-P, Brink M, Ciompi F, Scholten ET, Schaefer-Prokop CM, Van Rikxoort EM (2015) Automatic pulmonary artery-vein separation and classification in computed tomography using tree partitioning and peripheral vessel matching. IEEE Trans Med Imaging 35(3):882–892CrossRefPubMed Charbonnier J-P, Brink M, Ciompi F, Scholten ET, Schaefer-Prokop CM, Van Rikxoort EM (2015) Automatic pulmonary artery-vein separation and classification in computed tomography using tree partitioning and peripheral vessel matching. IEEE Trans Med Imaging 35(3):882–892CrossRefPubMed
9.
Zurück zum Zitat Nardelli P, Jimenez-Carretero D, Bermejo-Pelaez D, Washko GR, Rahaghi FN, Ledesma-Carbayo MJ, Estépar RSJ (2018) Pulmonary artery-vein classification in CT images using deep learning. IEEE Trans Med Imaging 37(11):2428–2440CrossRefPubMedPubMedCentral Nardelli P, Jimenez-Carretero D, Bermejo-Pelaez D, Washko GR, Rahaghi FN, Ledesma-Carbayo MJ, Estépar RSJ (2018) Pulmonary artery-vein classification in CT images using deep learning. IEEE Trans Med Imaging 37(11):2428–2440CrossRefPubMedPubMedCentral
10.
Zurück zum Zitat Pu J, Leader JK, Sechrist J, Beeche CA, Singh JP, Ocak IK, Risbano MG (2022) Automated identification of pulmonary arteries and veins depicted in non-contrast chest CT scans. Med Image Anal 77:102367CrossRefPubMedPubMedCentral Pu J, Leader JK, Sechrist J, Beeche CA, Singh JP, Ocak IK, Risbano MG (2022) Automated identification of pulmonary arteries and veins depicted in non-contrast chest CT scans. Med Image Anal 77:102367CrossRefPubMedPubMedCentral
11.
Zurück zum Zitat Qin Y, Zheng H, Gu Y, Huang X, Yang J, Wang L, Yao F, Zhu Y-M, Yang G-Z (2021) Learning tubule-sensitive CNNs for pulmonary airway and artery-vein segmentation in CT. IEEE Trans Med Imaging 40(6):1603–1617CrossRefPubMed Qin Y, Zheng H, Gu Y, Huang X, Yang J, Wang L, Yao F, Zhu Y-M, Yang G-Z (2021) Learning tubule-sensitive CNNs for pulmonary airway and artery-vein segmentation in CT. IEEE Trans Med Imaging 40(6):1603–1617CrossRefPubMed
12.
Zurück zum Zitat Payer C, Pienn M, Bálint Z, Shekhovtsov A, Talakic E, Nagy E, Olschewski A, Olschewski H, Urschler M (2016) Automated integer programming based separation of arteries and veins from thoracic CT images. Med. Image Anal 34:109–122CrossRefPubMed Payer C, Pienn M, Bálint Z, Shekhovtsov A, Talakic E, Nagy E, Olschewski A, Olschewski H, Urschler M (2016) Automated integer programming based separation of arteries and veins from thoracic CT images. Med. Image Anal 34:109–122CrossRefPubMed
13.
Zurück zum Zitat Namasivayam S, Kalra MK, Torres WE, Small WC (2006) Adverse reactions to intravenous iodinated contrast media: a primer for radiologists. Emerg Radiol 12:210–215CrossRefPubMed Namasivayam S, Kalra MK, Torres WE, Small WC (2006) Adverse reactions to intravenous iodinated contrast media: a primer for radiologists. Emerg Radiol 12:210–215CrossRefPubMed
14.
Zurück zum Zitat Goodfellow I, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, Ozair S, Courville A, Bengio Y (2020) Generative adversarial networks. Commun ACM 63(11):139–144 Goodfellow I, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, Ozair S, Courville A, Bengio Y (2020) Generative adversarial networks. Commun ACM 63(11):139–144
15.
Zurück zum Zitat Armato SG III, McLennan G, Bidaut L, McNitt-Gray MF, Meyer CR, Reeves AP, Zhao B, Aberle DR, Henschke CI, Hoffman EA (2011) The lung image database consortium (LIDC) and image database resource initiative (IDRI): a completed reference database of lung nodules on CT scans. Med. Phys 38(2):915–931CrossRefPubMedPubMedCentral Armato SG III, McLennan G, Bidaut L, McNitt-Gray MF, Meyer CR, Reeves AP, Zhao B, Aberle DR, Henschke CI, Hoffman EA (2011) The lung image database consortium (LIDC) and image database resource initiative (IDRI): a completed reference database of lung nodules on CT scans. Med. Phys 38(2):915–931CrossRefPubMedPubMedCentral
16.
Zurück zum Zitat Lo P, Van Ginneken B, Reinhardt JM, Yavarna T, De Jong PA, Irving B, Fetita C, Ortner M, Pinho R, Sijbers J (2012) Extraction of airways from CT (EXACT’09). IEEE Trans Med Imaging 31(11):2093–2107CrossRefPubMed Lo P, Van Ginneken B, Reinhardt JM, Yavarna T, De Jong PA, Irving B, Fetita C, Ortner M, Pinho R, Sijbers J (2012) Extraction of airways from CT (EXACT’09). IEEE Trans Med Imaging 31(11):2093–2107CrossRefPubMed
17.
Zurück zum Zitat Yushkevich PA, Piven J, Hazlett HC, Smith RG, Ho S, Gee JC, Gerig G (2006) User-guided 3d active contour segmentation of anatomical structures: significantly improved efficiency and reliability. Neuroimage 31(3):1116–1128CrossRefPubMed Yushkevich PA, Piven J, Hazlett HC, Smith RG, Ho S, Gee JC, Gerig G (2006) User-guided 3d active contour segmentation of anatomical structures: significantly improved efficiency and reliability. Neuroimage 31(3):1116–1128CrossRefPubMed
19.
Zurück zum Zitat Zhang H, Li J, Shen M, Wang Y, Yang G-Z (2019) Ddu-nets: distributed dense model for 3d MRI brain tumor segmentation. In: International MICCAI Brainlesion workshop, pp 208–217. Springer Zhang H, Li J, Shen M, Wang Y, Yang G-Z (2019) Ddu-nets: distributed dense model for 3d MRI brain tumor segmentation. In: International MICCAI Brainlesion workshop, pp 208–217. Springer
20.
Zurück zum Zitat Zhang H, Shen M, Shah PL, Yang G-Z (2020) Pathological airway segmentation with cascaded neural networks for bronchoscopic navigation. In: 2020 IEEE international conference on robotics and automation (ICRA), pp 9974–9980. IEEE Zhang H, Shen M, Shah PL, Yang G-Z (2020) Pathological airway segmentation with cascaded neural networks for bronchoscopic navigation. In: 2020 IEEE international conference on robotics and automation (ICRA), pp 9974–9980. IEEE
21.
Zurück zum Zitat Ronneberger O, Fischer P, Brox T (2015) U-net: convolutional networks for biomedical image segmentation. In: International conference on medical image computing and computer-assisted intervention, pp 234–241. Springer Ronneberger O, Fischer P, Brox T (2015) U-net: convolutional networks for biomedical image segmentation. In: International conference on medical image computing and computer-assisted intervention, pp 234–241. Springer
22.
Zurück zum Zitat Isensee F, Jaeger PF, Kohl SA, Petersen J, Maier-Hein KH (2021) nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation. Nature Methods 18(2):203–211CrossRefPubMed Isensee F, Jaeger PF, Kohl SA, Petersen J, Maier-Hein KH (2021) nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation. Nature Methods 18(2):203–211CrossRefPubMed
23.
Zurück zum Zitat Wu Y, He K (2018) Group normalization. In: Proceedings of the European conference on computer vision (ECCV), pp 3–19 Wu Y, He K (2018) Group normalization. In: Proceedings of the European conference on computer vision (ECCV), pp 3–19
24.
Zurück zum Zitat Ioffe S, Szegedy C (2015) Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning, pp. 448–456. PMLR Ioffe S, Szegedy C (2015) Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning, pp. 448–456. PMLR
25.
Zurück zum Zitat He K, Zhang X, Ren S, Sun J (2015) Delving deep into rectifiers: surpassing human-level performance on imagenet classification. In: Proceedings of the IEEE international conference on computer vision, pp 1026–1034 He K, Zhang X, Ren S, Sun J (2015) Delving deep into rectifiers: surpassing human-level performance on imagenet classification. In: Proceedings of the IEEE international conference on computer vision, pp 1026–1034
Metadaten
Titel
Deep anatomy learning for lung airway and artery-vein modeling with contrast-enhanced CT synthesis
verfasst von
Hanxiao Zhang
Minghui Zhang
Yun Gu
Guang-Zhong Yang
Publikationsdatum
31.05.2023
Verlag
Springer International Publishing
Erschienen in
International Journal of Computer Assisted Radiology and Surgery / Ausgabe 7/2023
Print ISSN: 1861-6410
Elektronische ISSN: 1861-6429
DOI
https://doi.org/10.1007/s11548-023-02946-7

Weitere Artikel der Ausgabe 7/2023

International Journal of Computer Assisted Radiology and Surgery 7/2023 Zur Ausgabe

Premium Partner