Skip to main content
Erschienen in: Neural Computing and Applications 15/2021

23.01.2021 | Original Article

Deep forest regression based on cross-layer full connection

verfasst von: Jian Tang, Heng Xia, Jian Zhang, Junfei Qiao, Wen Yu

Erschienen in: Neural Computing and Applications | Ausgabe 15/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Key process parameters such as production qualities and environmental pollution indices are difficult to be measured online in complex industrial processes. High time and economic costs make only limited small sample data be obtained to build process models, while the deep neural network model requires massive training samples. Although the deep forest algorithm is based on nonneural network structure, it mainly is utilized to effectively address classification problems. Owing to the above problems, a new deep forest regression algorithm based on cross-layer full connection is proposed. First of all, sub-forest prediction values of the input layer forest module are processed to obtain the layer regression vector, which is combined with the raw feature vector as the input of the middle layer forest model. And then, a cross-layer full connection way connecting the former layer regression vector contributes to an augmented layer regression vector. Meanwhile, the deep layer’s number is adaptively adjusted via verifying the validation error. In the end, the output layer forest model is trained by using the augmented layer regression vector originated from the middle layer forest model and the raw feature vector. Sequentially, the maximum information flow is effectively ensured by information sharing. Moreover, the proposed method has the advantages of simple hyper-parameter setting criterion. Simulation results based on benchmark and industrial data show that the proposed method has equal or better performance than several state-of-art methods.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Xie Y, Peng MG (2019) Forest fire forecasting using ensemble learning approaches. Neural Comput Appl 31:4541–4550CrossRef Xie Y, Peng MG (2019) Forest fire forecasting using ensemble learning approaches. Neural Comput Appl 31:4541–4550CrossRef
3.
Zurück zum Zitat Konrad M, John D, Leo C (2018) A soft sensor for prediction of mechanical properties of extruded PLA sheet using an instrumented slit die and machine learning algorithms. Polym Test 69:462–469CrossRef Konrad M, John D, Leo C (2018) A soft sensor for prediction of mechanical properties of extruded PLA sheet using an instrumented slit die and machine learning algorithms. Polym Test 69:462–469CrossRef
4.
Zurück zum Zitat Napier LFA, Aldrich C (2017) Soft sensor based on random forests and principal component analysis. Ifac Papersonline 50(1):1175–1180CrossRef Napier LFA, Aldrich C (2017) Soft sensor based on random forests and principal component analysis. Ifac Papersonline 50(1):1175–1180CrossRef
5.
Zurück zum Zitat Zhang W, Cheng X, Hu Y (2019) Online prediction of biomass moisture content in a fluidized bed dryer using electrostatic sensor arrays and the random forest method. Fuel 239(1):437–445CrossRef Zhang W, Cheng X, Hu Y (2019) Online prediction of biomass moisture content in a fluidized bed dryer using electrostatic sensor arrays and the random forest method. Fuel 239(1):437–445CrossRef
6.
Zurück zum Zitat Hinton G, Deng L, Yu D (2012) Deep neural networks for acoustic modeling in speech recognition. IEEE Signal Process Mag 29(6):82–97CrossRef Hinton G, Deng L, Yu D (2012) Deep neural networks for acoustic modeling in speech recognition. IEEE Signal Process Mag 29(6):82–97CrossRef
7.
Zurück zum Zitat Goodfellow I, Bengio Y, Courville A (2016) Deep learning. MIT Press, CambridgeMATH Goodfellow I, Bengio Y, Courville A (2016) Deep learning. MIT Press, CambridgeMATH
8.
Zurück zum Zitat Hemanth D, Deperlioglu O, Kose U (2020) An enhanced diabetic retinopathy detection and classification approach using deep convolutional neural network. Neural Comput Appl 32:707–721CrossRef Hemanth D, Deperlioglu O, Kose U (2020) An enhanced diabetic retinopathy detection and classification approach using deep convolutional neural network. Neural Comput Appl 32:707–721CrossRef
9.
Zurück zum Zitat Yi LZ, Chang FM, Long GZ, Liang XX, Ma WB (2020) Application research on short-term load forecasting based on evolutionary deep learning. J Electr Power Syst Autom 32(03):1–6 Yi LZ, Chang FM, Long GZ, Liang XX, Ma WB (2020) Application research on short-term load forecasting based on evolutionary deep learning. J Electr Power Syst Autom 32(03):1–6
12.
Zurück zum Zitat Yin BC, Wang WT, Wang LC (2015) A summary of deep learning research. J Beijing Univ Technol 41(01):48–59MATH Yin BC, Wang WT, Wang LC (2015) A summary of deep learning research. J Beijing Univ Technol 41(01):48–59MATH
13.
14.
Zurück zum Zitat Miller K, Hettinger C (2017) Forward thinking: building deep random forests. arXiv:1705.07366. Miller K, Hettinger C (2017) Forward thinking: building deep random forests. arXiv:1705.07366.
15.
Zurück zum Zitat Wang HY, Tang Y, Jia ZY, Ye F (2020) Dense adaptive cascade forest: a self-adaptive deep ensemble for classification problems. Soft Comput 24:2955–2968CrossRef Wang HY, Tang Y, Jia ZY, Ye F (2020) Dense adaptive cascade forest: a self-adaptive deep ensemble for classification problems. Soft Comput 24:2955–2968CrossRef
16.
Zurück zum Zitat Hu G, Li H, Xia Y, Luo L (2018) A deep Boltzmann machine and multi-grained scanning forest ensemble collaborative method and its application to industrial fault diagnosis. Comput Ind 100:287–296CrossRef Hu G, Li H, Xia Y, Luo L (2018) A deep Boltzmann machine and multi-grained scanning forest ensemble collaborative method and its application to industrial fault diagnosis. Comput Ind 100:287–296CrossRef
17.
Zurück zum Zitat Quinlan JR (1986) Induction of decision trees. Mach Learn 1(1):81–106 Quinlan JR (1986) Induction of decision trees. Mach Learn 1(1):81–106
18.
Zurück zum Zitat Quinlan JR (1992) C45: programs for machine learning. Morgan Kaufmann, London Quinlan JR (1992) C45: programs for machine learning. Morgan Kaufmann, London
19.
Zurück zum Zitat Breiman L, Friedman J, Stone C (1984) Classification and regression Trees. Wadsworth, LondonMATH Breiman L, Friedman J, Stone C (1984) Classification and regression Trees. Wadsworth, LondonMATH
20.
Zurück zum Zitat Stulp F, Sigaud O (2015) Many regression algorithms, one unified model: a review. Neural Netw 69:60–79CrossRef Stulp F, Sigaud O (2015) Many regression algorithms, one unified model: a review. Neural Netw 69:60–79CrossRef
21.
Zurück zum Zitat Kontschieder P, Fiterau M, Criminisi A (2015) Deep neural decision forests. In: IEEE international conference on computer vision (ICCV). IEEE Kontschieder P, Fiterau M, Criminisi A (2015) Deep neural decision forests. In: IEEE international conference on computer vision (ICCV). IEEE
22.
Zurück zum Zitat Zhen XT, Wang ZJ (2016) Multi-scale deep networks and regression forests for direct bi-ventricular volume estimation. Med Image Anal 30:120–129CrossRef Zhen XT, Wang ZJ (2016) Multi-scale deep networks and regression forests for direct bi-ventricular volume estimation. Med Image Anal 30:120–129CrossRef
23.
Zurück zum Zitat Wang YF, Shen TY (2016) Appearance-based gaze estimation using deep features and random forest regression. Knowl Based Syst 110:293–301CrossRef Wang YF, Shen TY (2016) Appearance-based gaze estimation using deep features and random forest regression. Knowl Based Syst 110:293–301CrossRef
24.
Zurück zum Zitat Chen YD, Li CF, Sang QB (2019) Convolutional neural network combined with deep forest for reference-free image quality evaluation. Prog Laser Optoelectron 56(11):131–137 Chen YD, Li CF, Sang QB (2019) Convolutional neural network combined with deep forest for reference-free image quality evaluation. Prog Laser Optoelectron 56(11):131–137
26.
Zurück zum Zitat Fan W, Wang H (2003) Is random model better? On its accuracy and efficiency. In: ICDM’03: proceedings of the third IEEE international conferenceon data mining, pp 51–58. Fan W, Wang H (2003) Is random model better? On its accuracy and efficiency. In: ICDM’03: proceedings of the third IEEE international conferenceon data mining, pp 51–58.
27.
Zurück zum Zitat Rafiei MH, Adeli H (2015) A novel machine learning model for estimation of sale prices of real estate units. J Constr Eng Manag 142(2):04015066CrossRef Rafiei MH, Adeli H (2015) A novel machine learning model for estimation of sale prices of real estate units. J Constr Eng Manag 142(2):04015066CrossRef
28.
Zurück zum Zitat Yeh IC (2007) Modeling slump flow of concrete using second-order regressions and artificial neural networks. Cem Concr Compos 29(6):474–480CrossRef Yeh IC (2007) Modeling slump flow of concrete using second-order regressions and artificial neural networks. Cem Concr Compos 29(6):474–480CrossRef
29.
Zurück zum Zitat Yeh IC (1998) Modeling of strength of high performance concrete using artificial neural networks. Cem Concr Res 28(12):1797–1808CrossRef Yeh IC (1998) Modeling of strength of high performance concrete using artificial neural networks. Cem Concr Res 28(12):1797–1808CrossRef
30.
Zurück zum Zitat Tang J, Yu W, Chai TY, Zhao LJ (2012) On-line principal component analysis with application to process modeling. Neurocomputing 82(1):167–178CrossRef Tang J, Yu W, Chai TY, Zhao LJ (2012) On-line principal component analysis with application to process modeling. Neurocomputing 82(1):167–178CrossRef
Metadaten
Titel
Deep forest regression based on cross-layer full connection
verfasst von
Jian Tang
Heng Xia
Jian Zhang
Junfei Qiao
Wen Yu
Publikationsdatum
23.01.2021
Verlag
Springer London
Erschienen in
Neural Computing and Applications / Ausgabe 15/2021
Print ISSN: 0941-0643
Elektronische ISSN: 1433-3058
DOI
https://doi.org/10.1007/s00521-021-05691-7

Weitere Artikel der Ausgabe 15/2021

Neural Computing and Applications 15/2021 Zur Ausgabe