Skip to main content
Erschienen in: Artificial Intelligence Review 1/2021

05.08.2020

Deep learning for biomedical image reconstruction: a survey

verfasst von: Hanene Ben Yedder, Ben Cardoen, Ghassan Hamarneh

Erschienen in: Artificial Intelligence Review | Ausgabe 1/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Medical imaging is an invaluable resource in medicine as it enables to peer inside the human body and provides scientists and physicians with a wealth of information indispensable for understanding, modelling, diagnosis, and treatment of diseases. Reconstruction algorithms entail transforming signals collected by acquisition hardware into interpretable images. Reconstruction is a challenging task given the ill-posedness of the problem and the absence of exact analytic inverse transforms in practical cases. While the last decades witnessed impressive advancements in terms of new modalities, improved temporal and spatial resolution, reduced cost, and wider applicability, several improvements can still be envisioned such as reducing acquisition and reconstruction time to reduce patient’s exposure to radiation and discomfort while increasing clinics throughput and reconstruction accuracy. Furthermore, the deployment of biomedical imaging in handheld devices with small power requires a fine balance between accuracy and latency. The design of fast, robust, and accurate reconstruction algorithms is a desirable, yet challenging, research goal. While the classical image reconstruction algorithms approximate the inverse function relying on expert-tuned parameters to ensure reconstruction performance, deep learning (DL) allows automatic feature extraction and real-time inference. Hence, DL presents a promising approach to image reconstruction with artifact reduction and reconstruction speed-up reported in recent works as part of a rapidly growing field. We review state-of-the-art image reconstruction algorithms with a focus on DL-based methods. First, we examine common reconstruction algorithm designs, applied metrics, and datasets used in the literature. Then, key challenges are discussed as potentially promising strategic directions for future research.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Adler J, Öktem O (2018) Learned primal-dual reconstruction. IEEE Trans Med Imaging 37(6):1322–1332 Adler J, Öktem O (2018) Learned primal-dual reconstruction. IEEE Trans Med Imaging 37(6):1322–1332
Zurück zum Zitat Aghasi A, Abdi A, Nguyen N, Romberg J (2017) Net-trim: convex pruning of deep neural networks with performance guarantee. In: Advances in neural information processing systems, pp 3177–3186 Aghasi A, Abdi A, Nguyen N, Romberg J (2017) Net-trim: convex pruning of deep neural networks with performance guarantee. In: Advances in neural information processing systems, pp 3177–3186
Zurück zum Zitat Alford S, Robinett R, Milechin L, Kepner J (2018) Pruned and structurally sparse neural networks. arXiv preprint arXiv:1810.00299 Alford S, Robinett R, Milechin L, Kepner J (2018) Pruned and structurally sparse neural networks. arXiv preprint arXiv:​1810.​00299
Zurück zum Zitat Alom MZ, Taha TM, Yakopcic C, Westberg S, Sidike P, Nasrin MS, Hasan M, Van Essen BC, Awwal AA, Asari VK (2019) A state-of-the-art survey on deep learning theory and architectures. Electronics 8(3):292 Alom MZ, Taha TM, Yakopcic C, Westberg S, Sidike P, Nasrin MS, Hasan M, Van Essen BC, Awwal AA, Asari VK (2019) A state-of-the-art survey on deep learning theory and architectures. Electronics 8(3):292
Zurück zum Zitat Al-Shakhrah I, Al-Obaidi T (2003) Common artifacts in computerized tomography: a review. Appl Radiol 32(8):25–32 Al-Shakhrah I, Al-Obaidi T (2003) Common artifacts in computerized tomography: a review. Appl Radiol 32(8):25–32
Zurück zum Zitat Antun V, Renna F, Poon C, Adcock B, Hansen AC (2019) On instabilities of deep learning in image reconstruction-does AI come at a cost? arXiv preprint arXiv:1902.05300 Antun V, Renna F, Poon C, Adcock B, Hansen AC (2019) On instabilities of deep learning in image reconstruction-does AI come at a cost? arXiv preprint arXiv:​1902.​05300
Zurück zum Zitat Arridge S, Maass P, Öktem O, Schönlieb C-B (2019) Solving inverse problems using data-driven models. Acta Numerica 28:1–174MathSciNet Arridge S, Maass P, Öktem O, Schönlieb C-B (2019) Solving inverse problems using data-driven models. Acta Numerica 28:1–174MathSciNet
Zurück zum Zitat Baikejiang R, Zhang W, Li C (2017) Diffuse optical tomography for breast cancer imaging guided by computed tomography: a feasibility study. J X-ray Sci Technol 25(3):341–355 Baikejiang R, Zhang W, Li C (2017) Diffuse optical tomography for breast cancer imaging guided by computed tomography: a feasibility study. J X-ray Sci Technol 25(3):341–355
Zurück zum Zitat Beattie B (2018) Improvements in the robustness and accuracy of bioluminescence tomographic reconstructions of distributed sources within small animals. PhD thesis, Columbia University Beattie B (2018) Improvements in the robustness and accuracy of bioluminescence tomographic reconstructions of distributed sources within small animals. PhD thesis, Columbia University
Zurück zum Zitat Beck A, Teboulle M (2009) A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM J Imaging Sci 2(1):183–202MathSciNet Beck A, Teboulle M (2009) A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM J Imaging Sci 2(1):183–202MathSciNet
Zurück zum Zitat Bhadra S, Zhou W, Anastasio MA (2020) Medical image reconstruction with image-adaptive priors learned by use of generative adversarial networks. In: Medical imaging 2020: physics of medical imaging, vol 11312, p 113120V. International Society for Optics and Photonics Bhadra S, Zhou W, Anastasio MA (2020) Medical image reconstruction with image-adaptive priors learned by use of generative adversarial networks. In: Medical imaging 2020: physics of medical imaging, vol 11312, p 113120V. International Society for Optics and Photonics
Zurück zum Zitat Boublil D, Elad M, Shtok J, Zibulevsky M (2015) Spatially-adaptive reconstruction in computed tomography using neural networks. IEEE Trans Med Imaging 34(7):1474–1485 Boublil D, Elad M, Shtok J, Zibulevsky M (2015) Spatially-adaptive reconstruction in computed tomography using neural networks. IEEE Trans Med Imaging 34(7):1474–1485
Zurück zum Zitat Boyd S, Parikh N, Chu E, Peleato B, Eckstein J et al (2011) Distributed optimization and statistical learning via the alternating direction method of multipliers. Found Trends® Mach Learn 3(1):1–122 Boyd S, Parikh N, Chu E, Peleato B, Eckstein J et al (2011) Distributed optimization and statistical learning via the alternating direction method of multipliers. Found Trends® Mach Learn 3(1):1–122
Zurück zum Zitat Boyd N, Jonas E, Babcock HP, Recht B (2018) Deeploco: fast 3D localization microscopy using neural networks. BioRxiv 267096 Boyd N, Jonas E, Babcock HP, Recht B (2018) Deeploco: fast 3D localization microscopy using neural networks. BioRxiv 267096
Zurück zum Zitat Braun H, Turaga P, Spanias A, Katoch S, Jayasuriya S, Tepedelenlioglu C (2019) Reconstruction-free compressive vision for surveillance applications. Synth Lect Signal Process 14(1):1–100 Braun H, Turaga P, Spanias A, Katoch S, Jayasuriya S, Tepedelenlioglu C (2019) Reconstruction-free compressive vision for surveillance applications. Synth Lect Signal Process 14(1):1–100
Zurück zum Zitat Cai C, Deng K, Ma C, Luo J (2018) End-to-end deep neural network for optical inversion in quantitative photoacoustic imaging. Opt Lett 43(12):2752–2755 Cai C, Deng K, Ma C, Luo J (2018) End-to-end deep neural network for optical inversion in quantitative photoacoustic imaging. Opt Lett 43(12):2752–2755
Zurück zum Zitat Cardoen B, Yedder HB, Sharma A, Chou KC, Nabi IR, Hamarneh G (2019) ERGO: efficient recurrent graph optimized emitter density estimation in single molecule localization microscopy. IEEE Trans Med Imaging, 39(6):1942–1956 Cardoen B, Yedder HB, Sharma A, Chou KC, Nabi IR, Hamarneh G (2019) ERGO: efficient recurrent graph optimized emitter density estimation in single molecule localization microscopy. IEEE Trans Med Imaging, 39(6):1942–1956
Zurück zum Zitat Chambolle A, Pock T (2011a) A first-order primal-dual algorithm for convex problems with applications to imaging. J Math Imaging Vis 40(1):120–145MathSciNet Chambolle A, Pock T (2011a) A first-order primal-dual algorithm for convex problems with applications to imaging. J Math Imaging Vis 40(1):120–145MathSciNet
Zurück zum Zitat Chambolle A, Pock T (2011b) A first-order primal-dual algorithm for convex problems with applications to imaging. J Math Imaging Vis 40(1):120–145MathSciNet Chambolle A, Pock T (2011b) A first-order primal-dual algorithm for convex problems with applications to imaging. J Math Imaging Vis 40(1):120–145MathSciNet
Zurück zum Zitat Chen Y, Yang Z, Hu Y, Yang G, Zhu Y, Li Y, Chen W, Toumoulin C et al (2012) Thoracic low-dose CT image processing using an artifact suppressed large-scale nonlocal means. Phys Med Biol 57(9):2667 Chen Y, Yang Z, Hu Y, Yang G, Zhu Y, Li Y, Chen W, Toumoulin C et al (2012) Thoracic low-dose CT image processing using an artifact suppressed large-scale nonlocal means. Phys Med Biol 57(9):2667
Zurück zum Zitat Chen H, Zhang Y, Kalra MK, Lin F, Chen Y, Liao P, Zhou J, Wang G (2017a) Low-dose CT with a residual encoder-decoder convolutional neural network. IEEE Trans Med Imaging 36(12):2524–2535 Chen H, Zhang Y, Kalra MK, Lin F, Chen Y, Liao P, Zhou J, Wang G (2017a) Low-dose CT with a residual encoder-decoder convolutional neural network. IEEE Trans Med Imaging 36(12):2524–2535
Zurück zum Zitat Chen H, Zhang Y, Zhang W, Liao P, Li K, Zhou J, Wang G (2017b) Low-dose CT via convolutional neural network. Biomed Opt Express 8(2):679–694 Chen H, Zhang Y, Zhang W, Liao P, Li K, Zhou J, Wang G (2017b) Low-dose CT via convolutional neural network. Biomed Opt Express 8(2):679–694
Zurück zum Zitat Cheng JY, Chen F, Alley MT, Pauly JM, Vasanawala SS (2018) Highly scalable image reconstruction using deep neural networks with bandpass filtering. arXiv preprint arXiv:1805.03300 Cheng JY, Chen F, Alley MT, Pauly JM, Vasanawala SS (2018) Highly scalable image reconstruction using deep neural networks with bandpass filtering. arXiv preprint arXiv:​1805.​03300
Zurück zum Zitat Cui J, Gong K, Guo N, Kim K, Liu H, Li Q (2019) CT-guided PET parametric image reconstruction using deep neural network without prior training data. In: Medical imaging 2019: physics of medical imaging, vol 10948, p 109480Z. International Society for Optics and Photonics Cui J, Gong K, Guo N, Kim K, Liu H, Li Q (2019) CT-guided PET parametric image reconstruction using deep neural network without prior training data. In: Medical imaging 2019: physics of medical imaging, vol 10948, p 109480Z. International Society for Optics and Photonics
Zurück zum Zitat Dabov K, Foi A, Katkovnik V, Egiazarian K (2007) Image denoising by sparse 3-D transform-domain collaborative filtering. IEEE Trans Image Process 16(8):2080–2095MathSciNet Dabov K, Foi A, Katkovnik V, Egiazarian K (2007) Image denoising by sparse 3-D transform-domain collaborative filtering. IEEE Trans Image Process 16(8):2080–2095MathSciNet
Zurück zum Zitat Daubechies I, Defrise M, De Mol C (2004) An iterative thresholding algorithm for linear inverse problems with a sparsity constraint. Commun Pure Appl Math J Issued Courant Inst Math Sci 57(11):1413–1457MathSciNet Daubechies I, Defrise M, De Mol C (2004) An iterative thresholding algorithm for linear inverse problems with a sparsity constraint. Commun Pure Appl Math J Issued Courant Inst Math Sci 57(11):1413–1457MathSciNet
Zurück zum Zitat Despres P, Jia X (2017) A review of GPU-based medical image reconstruction. Physica Medica 42:76–92 Despres P, Jia X (2017) A review of GPU-based medical image reconstruction. Physica Medica 42:76–92
Zurück zum Zitat Dong B, Shen Z (2015) Image restoration: a data-driven perspective. In: Proceedings of the international congress of industrial and applied mathematics (ICIAM), pp 65–108. Citeseer Dong B, Shen Z (2015) Image restoration: a data-driven perspective. In: Proceedings of the international congress of industrial and applied mathematics (ICIAM), pp 65–108. Citeseer
Zurück zum Zitat Fan Q, Witzel T, Nummenmaa A, Van Dijk KR, Van Horn JD, Drews MK, Somerville LH, Sheridan MA, Santillana RM, Snyder J et al (2016) MGH-USC human connectome project datasets with ultra-high b-value diffusion MRI. Neuroimage 124:1108–1114 Fan Q, Witzel T, Nummenmaa A, Van Dijk KR, Van Horn JD, Drews MK, Somerville LH, Sheridan MA, Santillana RM, Snyder J et al (2016) MGH-USC human connectome project datasets with ultra-high b-value diffusion MRI. Neuroimage 124:1108–1114
Zurück zum Zitat Feng J, Sun Q, Li Z, Sun Z, Jia K (2018) Back-propagation neural network-based reconstruction algorithm for diffuse optical tomography. J Biomed Opt 24(5):051407 Feng J, Sun Q, Li Z, Sun Z, Jia K (2018) Back-propagation neural network-based reconstruction algorithm for diffuse optical tomography. J Biomed Opt 24(5):051407
Zurück zum Zitat Fessler JA (2017) Medical image reconstruction: a brief overview of past milestones and future directions. arXiv preprint arXiv:1707.05927 Fessler JA (2017) Medical image reconstruction: a brief overview of past milestones and future directions. arXiv preprint arXiv:​1707.​05927
Zurück zum Zitat Gabay D, Mercier B (1976) A dual algorithm for the solution of nonlinear variational problems via finite element approximation. Comput Math Appl 2(1):17–40 Gabay D, Mercier B (1976) A dual algorithm for the solution of nonlinear variational problems via finite element approximation. Comput Math Appl 2(1):17–40
Zurück zum Zitat Gao H, Yu H, Osher S, Wang G (2011) Multi-energy CT based on a prior rank, intensity and sparsity model (prism). Inverse Probl 27(11):115012MathSciNet Gao H, Yu H, Osher S, Wang G (2011) Multi-energy CT based on a prior rank, intensity and sparsity model (prism). Inverse Probl 27(11):115012MathSciNet
Zurück zum Zitat Gates AJ, Ahn Y-Y (2017) The impact of random models on clustering similarity. J Mach Learn Res 18(1):3049–3076MathSciNet Gates AJ, Ahn Y-Y (2017) The impact of random models on clustering similarity. J Mach Learn Res 18(1):3049–3076MathSciNet
Zurück zum Zitat Geffrin J-M, Sabouroux P, Eyraud C (2005) Free space experimental scattering database continuation: experimental set-up and measurement precision. Inverse Probl 21(6):S117 Geffrin J-M, Sabouroux P, Eyraud C (2005) Free space experimental scattering database continuation: experimental set-up and measurement precision. Inverse Probl 21(6):S117
Zurück zum Zitat Georgeson G, Safai M (2017) Portable X-ray backscattering imaging system including a radioactive source, May 23. US Patent 9,658,173 Georgeson G, Safai M (2017) Portable X-ray backscattering imaging system including a radioactive source, May 23. US Patent 9,658,173
Zurück zum Zitat Geyer RC, Klein T, Nabi M (2017) Differentially private federated learning: a client level perspective. arXiv preprint arXiv:1712.07557 Geyer RC, Klein T, Nabi M (2017) Differentially private federated learning: a client level perspective. arXiv preprint arXiv:​1712.​07557
Zurück zum Zitat Gilad-Bachrach R, Dowlin N, Laine K, Lauter K, Naehrig M, Wernsing J (2016) Cryptonets: Applying neural networks to encrypted data with high throughput and accuracy. In: International conference on machine learning, pp 201–210 Gilad-Bachrach R, Dowlin N, Laine K, Lauter K, Naehrig M, Wernsing J (2016) Cryptonets: Applying neural networks to encrypted data with high throughput and accuracy. In: International conference on machine learning, pp 201–210
Zurück zum Zitat Goceri E, Goceri N (2017) Deep learning in medical image analysis: recent advances and future trends. International Conferences Computer Graphics, Visualization, Computer Vision and Image Processing (CGVCVIP 2017), Portugal. Goceri E, Goceri N (2017) Deep learning in medical image analysis: recent advances and future trends. International Conferences Computer Graphics, Visualization, Computer Vision and Image Processing (CGVCVIP 2017), Portugal.
Zurück zum Zitat Goceri E, Gooya A (2018) On the importance of batch size for deep learning. In: International conference on mathematics. Istanbul, Turkey Goceri E, Gooya A (2018) On the importance of batch size for deep learning. In: International conference on mathematics. Istanbul, Turkey
Zurück zum Zitat Gong K, Catana C, Qi J, Li Q (2018) Pet image reconstruction using deep image prior. IEEE Trans Med imaging 38(7):1655–1665 Gong K, Catana C, Qi J, Li Q (2018) Pet image reconstruction using deep image prior. IEEE Trans Med imaging 38(7):1655–1665
Zurück zum Zitat Gong K, Catana C, Qi J, Li Q (2019) Direct patlak reconstruction from dynamic pet using unsupervised deep learning. In: 15th International meeting on fully three-dimensional image reconstruction in radiology and nuclear medicine, vol 11072, p 110720R. International Society for Optics and Photonics Gong K, Catana C, Qi J, Li Q (2019) Direct patlak reconstruction from dynamic pet using unsupervised deep learning. In: 15th International meeting on fully three-dimensional image reconstruction in radiology and nuclear medicine, vol 11072, p 110720R. International Society for Optics and Photonics
Zurück zum Zitat Goodfellow I, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, Ozair S, Courville A, Bengio Y (2014) Generative adversarial nets. In: Advances in neural information processing systems, pp 2672–2680 Goodfellow I, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, Ozair S, Courville A, Bengio Y (2014) Generative adversarial nets. In: Advances in neural information processing systems, pp 2672–2680
Zurück zum Zitat Gottschling NM, Antun V, Adcock B, Hansen AC (2020) The troublesome kernel: why deep learning for inverse problems is typically unstable. arXiv preprint arXiv:2001.01258 Gottschling NM, Antun V, Adcock B, Hansen AC (2020) The troublesome kernel: why deep learning for inverse problems is typically unstable. arXiv preprint arXiv:​2001.​01258
Zurück zum Zitat Guo H, Qiu C, Vaswani N (2014) An online algorithm for separating sparse and low-dimensional signal sequences from their sum. IEEE Trans Signal Process 62(16):4284–4297MathSciNet Guo H, Qiu C, Vaswani N (2014) An online algorithm for separating sparse and low-dimensional signal sequences from their sum. IEEE Trans Signal Process 62(16):4284–4297MathSciNet
Zurück zum Zitat Guo J, Qi H, Xu Y, Chen Z, Li S, Zhou L (2016) Iterative image reconstruction for limited-angle CT using optimized initial image. Comput Math Methods Med 2016 2016:1–9 Guo J, Qi H, Xu Y, Chen Z, Li S, Zhou L (2016) Iterative image reconstruction for limited-angle CT using optimized initial image. Comput Math Methods Med 2016 2016:1–9
Zurück zum Zitat Gupta H, Jin KH, Nguyen HQ, McCann MT, Unser M (2018) CNN-based projected gradient descent for consistent CT image reconstruction. IEEE Trans Med Imaging 37(6):1440–1453 Gupta H, Jin KH, Nguyen HQ, McCann MT, Unser M (2018) CNN-based projected gradient descent for consistent CT image reconstruction. IEEE Trans Med Imaging 37(6):1440–1453
Zurück zum Zitat Häggström I, Beattie BJ, Schmidtlein CR (2016) Dynamic PET simulator via tomographic emission projection for kinetic modeling and parametric image studies. Med Phys 43(6Part1):3104–3116 Häggström I, Beattie BJ, Schmidtlein CR (2016) Dynamic PET simulator via tomographic emission projection for kinetic modeling and parametric image studies. Med Phys 43(6Part1):3104–3116
Zurück zum Zitat Häggström I, Schmidtlein CR, Campanella G, Fuchs TJ (2019) Deeppet: a deep encoder-decoder network for directly solving the PET image reconstruction inverse problem. Med Image Anal 54:253–262 Häggström I, Schmidtlein CR, Campanella G, Fuchs TJ (2019) Deeppet: a deep encoder-decoder network for directly solving the PET image reconstruction inverse problem. Med Image Anal 54:253–262
Zurück zum Zitat Harrison RL (2010) Monte carlo simulation of emission tomography and other medical imaging techniques. In: AIP conference proceedings, vol 1204, pp 126–132. AIP Harrison RL (2010) Monte carlo simulation of emission tomography and other medical imaging techniques. In: AIP conference proceedings, vol 1204, pp 126–132. AIP
Zurück zum Zitat He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 770–778 He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 770–778
Zurück zum Zitat Holden S, Sage D (2016) Imaging: super-resolution fight club. Nat Photonics 10(3):152 Holden S, Sage D (2016) Imaging: super-resolution fight club. Nat Photonics 10(3):152
Zurück zum Zitat Hoshi Y, Yamada Y (2016) Overview of diffuse optical tomography and its clinical applications. J Biomed Opt 21(9):091312 Hoshi Y, Yamada Y (2016) Overview of diffuse optical tomography and its clinical applications. J Biomed Opt 21(9):091312
Zurück zum Zitat Hosseini SAH, Yaman B, Moeller S, Hong M, Akçakaya M (2019) Dense recurrent neural networks for inverse problems: History-cognizant unrolling of optimization algorithms. arXiv preprint arXiv:1912.07197 Hosseini SAH, Yaman B, Moeller S, Hong M, Akçakaya M (2019) Dense recurrent neural networks for inverse problems: History-cognizant unrolling of optimization algorithms. arXiv preprint arXiv:​1912.​07197
Zurück zum Zitat Huang Y, Preuhs A, Lauritsch G, Manhart M, Huang X, Maier A (2019b) Data consistent artifact reduction for limited angle tomography with deep learning prior. In: International workshop on machine learning for medical image reconstruction, pp 101–112. Springer Huang Y, Preuhs A, Lauritsch G, Manhart M, Huang X, Maier A (2019b) Data consistent artifact reduction for limited angle tomography with deep learning prior. In: International workshop on machine learning for medical image reconstruction, pp 101–112. Springer
Zurück zum Zitat Huang Z, Wang N (2018) Data-driven sparse structure selection for deep neural networks. In: Proceedings of the European conference on computer vision (ECCV), pp 304–320 Huang Z, Wang N (2018) Data-driven sparse structure selection for deep neural networks. In: Proceedings of the European conference on computer vision (ECCV), pp 304–320
Zurück zum Zitat Huang Q, Yang D, Yi J, Axel L, Metaxas D (2019a) FR-Net: joint reconstruction and segmentation in compressed sensing cardiac MRI. In: International conference on functional imaging and modeling of the heart, pp 352–360. Springer Huang Q, Yang D, Yi J, Axel L, Metaxas D (2019a) FR-Net: joint reconstruction and segmentation in compressed sensing cardiac MRI. In: International conference on functional imaging and modeling of the heart, pp 352–360. Springer
Zurück zum Zitat Hyun CM, Kim HP, Lee SM, Lee S, Seo JK (2018) Deep learning for undersampled MRI reconstruction. Phys Med Biol 63(13):135007 Hyun CM, Kim HP, Lee SM, Lee S, Seo JK (2018) Deep learning for undersampled MRI reconstruction. Phys Med Biol 63(13):135007
Zurück zum Zitat Jhamb TK, Rejathalal V, Govindan V (2015) A review on image reconstruction through MRI k-space data. Int J Image Graph Signal Process 7(7):42 Jhamb TK, Rejathalal V, Govindan V (2015) A review on image reconstruction through MRI k-space data. Int J Image Graph Signal Process 7(7):42
Zurück zum Zitat Jin KH, McCann MT, Froustey E, Unser M (2017) Deep convolutional neural network for inverse problems in imaging. IEEE Trans Image Process 26(9):4509–4522MathSciNet Jin KH, McCann MT, Froustey E, Unser M (2017) Deep convolutional neural network for inverse problems in imaging. IEEE Trans Image Process 26(9):4509–4522MathSciNet
Zurück zum Zitat Kang E, Koo HJ, Yang DH, Seo JB, Ye JC (2019) Cycle-consistent adversarial denoising network for multiphase coronary CT angiography. Med Phys 46(2):550–562 Kang E, Koo HJ, Yang DH, Seo JB, Ye JC (2019) Cycle-consistent adversarial denoising network for multiphase coronary CT angiography. Med Phys 46(2):550–562
Zurück zum Zitat Kearney V, Ziemer BP, Perry A, Wang T, Chan JW, Ma L, Morin O, Yom SS, Solberg TD (2020) Attention-aware discrimination for MR-to-CT image translation using cycle-consistent generative adversarial networks. Radiol Artif Intell 2(2):e190027 Kearney V, Ziemer BP, Perry A, Wang T, Chan JW, Ma L, Morin O, Yom SS, Solberg TD (2020) Attention-aware discrimination for MR-to-CT image translation using cycle-consistent generative adversarial networks. Radiol Artif Intell 2(2):e190027
Zurück zum Zitat Knoll F, Hammernik K, Zhang C, Moeller S, Pock T, Sodickson DK, Akcakaya M (2020) Deep-learning methods for parallel magnetic resonance imaging reconstruction: a survey of the current approaches, trends, and issues. IEEE Signal Process Mag 37(1):128–140 Knoll F, Hammernik K, Zhang C, Moeller S, Pock T, Sodickson DK, Akcakaya M (2020) Deep-learning methods for parallel magnetic resonance imaging reconstruction: a survey of the current approaches, trends, and issues. IEEE Signal Process Mag 37(1):128–140
Zurück zum Zitat Lan H, Zhou K, Yang C, Cheng J, Liu J, Gao S, Gao F (2019) Ki-gan: knowledge infusion generative adversarial network for photoacoustic image reconstruction in vivo. In: International conference on medical image computing and computer-assisted intervention, pp 273–281. Springer Lan H, Zhou K, Yang C, Cheng J, Liu J, Gao S, Gao F (2019) Ki-gan: knowledge infusion generative adversarial network for photoacoustic image reconstruction in vivo. In: International conference on medical image computing and computer-assisted intervention, pp 273–281. Springer
Zurück zum Zitat Latorre-Carmona P, Traver VJ, Sánchez JS, Tajahuerce E (2019) Online reconstruction-free single-pixel image classification. Image Vis Comput 86:28–37 Latorre-Carmona P, Traver VJ, Sánchez JS, Tajahuerce E (2019) Online reconstruction-free single-pixel image classification. Image Vis Comput 86:28–37
Zurück zum Zitat Lebed E, Lee S, Sarunic MV, Beg MF (2013) Rapid radial optical coherence tomography image acquisition. J Biomed Opt 18(3):036004 Lebed E, Lee S, Sarunic MV, Beg MF (2013) Rapid radial optical coherence tomography image acquisition. J Biomed Opt 18(3):036004
Zurück zum Zitat Li D, Du C, He H (2020a) Semi-supervised cross-modal image generation with generative adversarial networks. Pattern Recogn 100:107085 Li D, Du C, He H (2020a) Semi-supervised cross-modal image generation with generative adversarial networks. Pattern Recogn 100:107085
Zurück zum Zitat Liang Z-P (2007) Spatiotemporal imaging with partially separable functions. In: 2007 4th IEEE international symposium on biomedical imaging: from nano to macro, pp 988–991. IEEE Liang Z-P (2007) Spatiotemporal imaging with partially separable functions. In: 2007 4th IEEE international symposium on biomedical imaging: from nano to macro, pp 988–991. IEEE
Zurück zum Zitat Liang D, Cheng J, Ke Z, Ying L (2020) Deep magnetic resonance image reconstruction: inverse problems meet neural networks. IEEE Signal Process Mag 37(1):141–151 Liang D, Cheng J, Ke Z, Ying L (2020) Deep magnetic resonance image reconstruction: inverse problems meet neural networks. IEEE Signal Process Mag 37(1):141–151
Zurück zum Zitat Liang K, Yang H, Kang K, Xing Y (2018) Improve angular resolution for sparse-view CT with residual convolutional neural network. In: Medical imaging 2018: physics of medical imaging, vol 10573, p 105731K. International Society for Optics and Photonics Liang K, Yang H, Kang K, Xing Y (2018) Improve angular resolution for sparse-view CT with residual convolutional neural network. In: Medical imaging 2018: physics of medical imaging, vol 10573, p 105731K. International Society for Optics and Photonics
Zurück zum Zitat Li D, Li S, Zhu M, Gao Q, Bian Z, Huang H, Zhang S, Huang J, Zeng D, Ma J (2020b) Unsupervised data fidelity enhancement network for spectral ct reconstruction. In: Medical imaging 2020: physics of medical imaging, vol 11312, p 113124D. International Society for Optics and Photonics Li D, Li S, Zhu M, Gao Q, Bian Z, Huang H, Zhang S, Huang J, Zeng D, Ma J (2020b) Unsupervised data fidelity enhancement network for spectral ct reconstruction. In: Medical imaging 2020: physics of medical imaging, vol 11312, p 113124D. International Society for Optics and Photonics
Zurück zum Zitat Lin Z (2016) A review on low-rank models in data analysis. Big Data Inf Anal 1(2&3):139–161 Lin Z (2016) A review on low-rank models in data analysis. Big Data Inf Anal 1(2&3):139–161
Zurück zum Zitat Lucas A, Iliadis M, Molina R, Katsaggelos AK (2018) Using deep neural networks for inverse problems in imaging: beyond analytical methods. IEEE Signal Process Mag 35(1):20–36 Lucas A, Iliadis M, Molina R, Katsaggelos AK (2018) Using deep neural networks for inverse problems in imaging: beyond analytical methods. IEEE Signal Process Mag 35(1):20–36
Zurück zum Zitat McCann MT, Jin KH, Unser M (2017) Convolutional neural networks for inverse problems in imaging: a review. IEEE Signal Process Mag 34(6):85–95 McCann MT, Jin KH, Unser M (2017) Convolutional neural networks for inverse problems in imaging: a review. IEEE Signal Process Mag 34(6):85–95
Zurück zum Zitat Mendrik AM, Vincken KL, Kuijf HJ, Breeuwer M, Bouvy WH, De Bresser J, Alansary A, De Bruijne M, Carass A, El-Baz A et al (2015) MRbrains challenge: online evaluation framework for brain image segmentation in 3T MRI scans. Comput Intell Neurosci 2015:1 Mendrik AM, Vincken KL, Kuijf HJ, Breeuwer M, Bouvy WH, De Bresser J, Alansary A, De Bruijne M, Carass A, El-Baz A et al (2015) MRbrains challenge: online evaluation framework for brain image segmentation in 3T MRI scans. Comput Intell Neurosci 2015:1
Zurück zum Zitat Meng M, Li S, Yao L, Li D, Zhu M, Gao Q, Xie Q, Zhao Q, Bian Z, Huang J et al (2020) Semi-supervised learned sinogram restoration network for low-dose ct image reconstruction. In: Medical imaging 2020: physics of medical imaging, vol 11312, p 113120B. International Society for Optics and Photonics Meng M, Li S, Yao L, Li D, Zhu M, Gao Q, Xie Q, Zhao Q, Bian Z, Huang J et al (2020) Semi-supervised learned sinogram restoration network for low-dose ct image reconstruction. In: Medical imaging 2020: physics of medical imaging, vol 11312, p 113120B. International Society for Optics and Photonics
Zurück zum Zitat Moslemi V, Erfanian V, Ashoor M (2020) Estimation of optimized timely system matrix with improved image quality in iterative reconstruction algorithm: a simulation study. Heliyon 6(1):e03279 Moslemi V, Erfanian V, Ashoor M (2020) Estimation of optimized timely system matrix with improved image quality in iterative reconstruction algorithm: a simulation study. Heliyon 6(1):e03279
Zurück zum Zitat Nehme E, Weiss LE, Michaeli T, Shechtman Y (2018) Deep-storm: super-resolution single-molecule microscopy by deep learning. Optica 5(4):458–464 Nehme E, Weiss LE, Michaeli T, Shechtman Y (2018) Deep-storm: super-resolution single-molecule microscopy by deep learning. Optica 5(4):458–464
Zurück zum Zitat Nesterov YE (1983) A method for solving the convex programming problem with convergence rate o (\({\rm 1/k}^{\wedge }\) 2). Dokl Akad Nauk SSSR 269:543–547MathSciNet Nesterov YE (1983) A method for solving the convex programming problem with convergence rate o (\({\rm 1/k}^{\wedge }\) 2). Dokl Akad Nauk SSSR 269:543–547MathSciNet
Zurück zum Zitat Oksuz I, Clough J, Ruijsink B, Puyol-Antón E, Bustin A, Cruz G, Prieto C, Rueckert D, King AP, Schnabel JA (2019) Detection and correction of cardiac MRI motion artefacts during reconstruction from k-space. In: International conference on medical image computing and computer-assisted intervention, pp 695–703. Springer Oksuz I, Clough J, Ruijsink B, Puyol-Antón E, Bustin A, Cruz G, Prieto C, Rueckert D, King AP, Schnabel JA (2019) Detection and correction of cardiac MRI motion artefacts during reconstruction from k-space. In: International conference on medical image computing and computer-assisted intervention, pp 695–703. Springer
Zurück zum Zitat Otazo R, Candès E, Sodickson DK (2015) Low-rank plus sparse matrix decomposition for accelerated dynamic mri with separation of background and dynamic components. Magn Reson Med 73(3):1125–1136 Otazo R, Candès E, Sodickson DK (2015) Low-rank plus sparse matrix decomposition for accelerated dynamic mri with separation of background and dynamic components. Magn Reson Med 73(3):1125–1136
Zurück zum Zitat Ouyang J, Chen KT, Gong E, Pauly J, Zaharchuk G (2019) Ultra-low-dose PET reconstruction using generative adversarial network with feature matching and task-specific perceptual loss. Med Phys 46(8):3555–3564 Ouyang J, Chen KT, Gong E, Pauly J, Zaharchuk G (2019) Ultra-low-dose PET reconstruction using generative adversarial network with feature matching and task-specific perceptual loss. Med Phys 46(8):3555–3564
Zurück zum Zitat Pap G, Lékó G, Grósz T (2019) A reconstruction-free projection selection procedure for binary tomography using convolutional neural networks. In: International conference on image analysis and recognition, pp 228–236. Springer Pap G, Lékó G, Grósz T (2019) A reconstruction-free projection selection procedure for binary tomography using convolutional neural networks. In: International conference on image analysis and recognition, pp 228–236. Springer
Zurück zum Zitat Paul G, Cardinale J, Sbalzarini IF (2013) Coupling image restoration and segmentation: a generalized linear model/bregman perspective. Int J Comput Vis 104(1):69–93MathSciNet Paul G, Cardinale J, Sbalzarini IF (2013) Coupling image restoration and segmentation: a generalized linear model/bregman perspective. Int J Comput Vis 104(1):69–93MathSciNet
Zurück zum Zitat Pelt DM, Batenburg KJ (2013) Fast tomographic reconstruction from limited data using artificial neural networks. IEEE Trans Image Process 22(12):5238–5251 Pelt DM, Batenburg KJ (2013) Fast tomographic reconstruction from limited data using artificial neural networks. IEEE Trans Image Process 22(12):5238–5251
Zurück zum Zitat Qin C, Schlemper J, Caballero J, Price AN, Hajnal JV, Rueckert D (2018) Convolutional recurrent neural networks for dynamic MR image reconstruction. IEEE Trans Med Imaging 38(1):280–290 Qin C, Schlemper J, Caballero J, Price AN, Hajnal JV, Rueckert D (2018) Convolutional recurrent neural networks for dynamic MR image reconstruction. IEEE Trans Med Imaging 38(1):280–290
Zurück zum Zitat Rajagopal A, Stier N, Dey J, King MA, Chandrasekaran S (2019) Towards deep iterative-reconstruction algorithms for computed tomography (CT) applications. In: Medical imaging 2019: physics of medical imaging, vol 10948, p 1094856. International Society for Optics and Photonics Rajagopal A, Stier N, Dey J, King MA, Chandrasekaran S (2019) Towards deep iterative-reconstruction algorithms for computed tomography (CT) applications. In: Medical imaging 2019: physics of medical imaging, vol 10948, p 1094856. International Society for Optics and Photonics
Zurück zum Zitat Ravishankar S, Ye JC, Fessler JA (2019) Image reconstruction: From sparsity to data-adaptive methods and machine learning. arXiv preprint arXiv:1904.02816 Ravishankar S, Ye JC, Fessler JA (2019) Image reconstruction: From sparsity to data-adaptive methods and machine learning. arXiv preprint arXiv:​1904.​02816
Zurück zum Zitat Rivest RL, Adleman L, Dertouzos ML et al (1978) On data banks and privacy homomorphisms. Found Secure Comput 4(11):169–180MathSciNet Rivest RL, Adleman L, Dertouzos ML et al (1978) On data banks and privacy homomorphisms. Found Secure Comput 4(11):169–180MathSciNet
Zurück zum Zitat Rodríguez P (2013) Total variation regularization algorithms for images corrupted with different noise models: a review. J Electr Comput Eng 2013:10MathSciNet Rodríguez P (2013) Total variation regularization algorithms for images corrupted with different noise models: a review. J Electr Comput Eng 2013:10MathSciNet
Zurück zum Zitat Ronneberger O, Fischer P, Brox T (2015) U-net: convolutional networks for biomedical image segmentation. In: International conference on medical image computing and computer-assisted intervention, pp 234–241. Springer Ronneberger O, Fischer P, Brox T (2015) U-net: convolutional networks for biomedical image segmentation. In: International conference on medical image computing and computer-assisted intervention, pp 234–241. Springer
Zurück zum Zitat Rykkje A, Carlsen JF, Nielsen MB (2019) Hand-held ultrasound devices compared with high-end ultrasound systems: a systematic review. Diagnostics 9(2):61 Rykkje A, Carlsen JF, Nielsen MB (2019) Hand-held ultrasound devices compared with high-end ultrasound systems: a systematic review. Diagnostics 9(2):61
Zurück zum Zitat Sandino CM, Cheng JY, Chen F, Mardani M, Pauly JM, Vasanawala SS (2020) Compressed sensing: From research to clinical practice with deep neural networks: shortening scan times for magnetic resonance imaging. IEEE Signal Process Mag 37(1):117–127 Sandino CM, Cheng JY, Chen F, Mardani M, Pauly JM, Vasanawala SS (2020) Compressed sensing: From research to clinical practice with deep neural networks: shortening scan times for magnetic resonance imaging. IEEE Signal Process Mag 37(1):117–127
Zurück zum Zitat Sbalzarini IF (2016) Seeing is believing: quantifying is convincing: computational image analysis in biology. In: Focus on bio-image informatics, pp 1–39. Springer Sbalzarini IF (2016) Seeing is believing: quantifying is convincing: computational image analysis in biology. In: Focus on bio-image informatics, pp 1–39. Springer
Zurück zum Zitat Schlemper J, Caballero J, Hajnal JV, Price AN, Rueckert D (2018) A deep cascade of convolutional neural networks for dynamic MR image reconstruction. IEEE Trans Med Imaging 37(2):491–503 Schlemper J, Caballero J, Hajnal JV, Price AN, Rueckert D (2018) A deep cascade of convolutional neural networks for dynamic MR image reconstruction. IEEE Trans Med Imaging 37(2):491–503
Zurück zum Zitat Schlemper J, Caballero J, Hajnal JV, Price A, Rueckert D (2017) A deep cascade of convolutional neural networks for MR image reconstruction. In: International conference on information processing in medical imaging, pp 647–658. Springer Schlemper J, Caballero J, Hajnal JV, Price A, Rueckert D (2017) A deep cascade of convolutional neural networks for MR image reconstruction. In: International conference on information processing in medical imaging, pp 647–658. Springer
Zurück zum Zitat Schweiger M, Arridge SR (2014) The toast++ software suite for forward and inverse modeling in optical tomography. J Biomed Opt 19(4):040801 Schweiger M, Arridge SR (2014) The toast++ software suite for forward and inverse modeling in optical tomography. J Biomed Opt 19(4):040801
Zurück zum Zitat Sharma A, Hamarneh G (2019) Missing MRI pulse sequence synthesis using multi-modal generative adversarial network. IEEE Trans Med Imaging. 39(4):1170–1183 Sharma A, Hamarneh G (2019) Missing MRI pulse sequence synthesis using multi-modal generative adversarial network. IEEE Trans Med Imaging. 39(4):1170–1183
Zurück zum Zitat Shen G, Dwivedi K, Majima K, Horikawa T, Kamitani Y (2019) End-to-end deep image reconstruction from human brain activity. Front Comput Neurosci 13:21 Shen G, Dwivedi K, Majima K, Horikawa T, Kamitani Y (2019) End-to-end deep image reconstruction from human brain activity. Front Comput Neurosci 13:21
Zurück zum Zitat Shokoufi M, Golnaraghi F (2016) Development of a handheld diffuse optical breast cancer assessment probe. J Innov Opt Health Sci 9(02):1650007 Shokoufi M, Golnaraghi F (2016) Development of a handheld diffuse optical breast cancer assessment probe. J Innov Opt Health Sci 9(02):1650007
Zurück zum Zitat Singh R, Digumarthy SR, Muse VV, Kambadakone AR, Blake MA, Tabari A, Hoi Y, Akino N, Angel E, Madan R et al (2020) Image quality and lesion detection on deep learning reconstruction and iterative reconstruction of submillisievert chest and abdominal CT. Am J Roentgenol. 214(3):566–573. Singh R, Digumarthy SR, Muse VV, Kambadakone AR, Blake MA, Tabari A, Hoi Y, Akino N, Angel E, Madan R et al (2020) Image quality and lesion detection on deep learning reconstruction and iterative reconstruction of submillisievert chest and abdominal CT. Am J Roentgenol. ​214(3):566–573.
Zurück zum Zitat Singh V, Tewfik AH, Ress DB (2015) Under-sampled functional MRI using low-rank plus sparse matrix decomposition. In: 2015 IEEE international conference on acoustics, speech and signal processing (ICASSP), pp 897–901. IEEE Singh V, Tewfik AH, Ress DB (2015) Under-sampled functional MRI using low-rank plus sparse matrix decomposition. In: 2015 IEEE international conference on acoustics, speech and signal processing (ICASSP), pp 897–901. IEEE
Zurück zum Zitat St-Yves, G, Naselaris T (2018) Generative adversarial networks conditioned on brain activity reconstruct seen images. In: 2018 IEEE international conference on systems, man, and cybernetics (SMC), pp 1054–1061. IEEE St-Yves, G, Naselaris T (2018) Generative adversarial networks conditioned on brain activity reconstruct seen images. In: 2018 IEEE international conference on systems, man, and cybernetics (SMC), pp 1054–1061. IEEE
Zurück zum Zitat Sun Y, Xia Z, Kamilov US (2018) Efficient and accurate inversion of multiple scattering with deep learning. Opt Express 26(11):14678–14688 Sun Y, Xia Z, Kamilov US (2018) Efficient and accurate inversion of multiple scattering with deep learning. Opt Express 26(11):14678–14688
Zurück zum Zitat Sun Y, Wohlberg B, Kamilov US (2019c) An online plug-and-play algorithm for regularized image reconstruction. IEEE Trans Comput Imaging 5(3):395–408MathSciNet Sun Y, Wohlberg B, Kamilov US (2019c) An online plug-and-play algorithm for regularized image reconstruction. IEEE Trans Comput Imaging 5(3):395–408MathSciNet
Zurück zum Zitat Sun X, Choi J, Chen C-Y, Wang N, Venkataramani S, Srinivasan VV, Cui X, Zhang W, Gopalakrishnan K (2019b) Hybrid 8-bit floating point (HFP8) training and inference for deep neural networks. In: Advances in neural information processing systems, pp 4901–4910 Sun X, Choi J, Chen C-Y, Wang N, Venkataramani S, Srinivasan VV, Cui X, Zhang W, Gopalakrishnan K (2019b) Hybrid 8-bit floating point (HFP8) training and inference for deep neural networks. In: Advances in neural information processing systems, pp 4901–4910
Zurück zum Zitat Sun L, Fan Z, Ding X, Huang Y, Paisley J (2019a) Joint CS-MRI reconstruction and segmentation with a unified deep network. In: International conference on information processing in medical imaging, pp 492–504. Springer Sun L, Fan Z, Ding X, Huang Y, Paisley J (2019a) Joint CS-MRI reconstruction and segmentation with a unified deep network. In: International conference on information processing in medical imaging, pp 492–504. Springer
Zurück zum Zitat Sun J, Li H, Xu Z et al (2016) Deep ADMM-Net for compressive sensing MRI. In: Advances in neural information processing systems, pp 10–18 Sun J, Li H, Xu Z et al (2016) Deep ADMM-Net for compressive sensing MRI. In: Advances in neural information processing systems, pp 10–18
Zurück zum Zitat Thaler F, Hammernik K, Payer C, Urschler M, Štern D (2018) Sparse-view CT reconstruction using wasserstein GANs. In: International workshop on machine learning for medical image reconstruction, pp 75–82. Springer Thaler F, Hammernik K, Payer C, Urschler M, Štern D (2018) Sparse-view CT reconstruction using wasserstein GANs. In: International workshop on machine learning for medical image reconstruction, pp 75–82. Springer
Zurück zum Zitat Ulyanov D, Vedaldi A, Lempitsky V(2018) Deep image prior. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 9446–9454 Ulyanov D, Vedaldi A, Lempitsky V(2018) Deep image prior. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 9446–9454
Zurück zum Zitat Vandenberghe S, D’Asseler Y, Van de Walle R, Kauppinen T, Koole M, Bouwens L, Van Laere K, Lemahieu I, Dierckx R (2001) Iterative reconstruction algorithms in nuclear medicine. Comput Med Imaging Graph 25(2):105–111 Vandenberghe S, D’Asseler Y, Van de Walle R, Kauppinen T, Koole M, Bouwens L, Van Laere K, Lemahieu I, Dierckx R (2001) Iterative reconstruction algorithms in nuclear medicine. Comput Med Imaging Graph 25(2):105–111
Zurück zum Zitat Waibel D, Gröhl J, Isensee F, Kirchner T, Maier-Hein K, Maier-Hein L (2018) Reconstruction of initial pressure from limited view photoacoustic images using deep learning. In: Photons plus ultrasound: imaging and sensing 2018, vol 10494, p 104942S. International Society for Optics and Photonics Waibel D, Gröhl J, Isensee F, Kirchner T, Maier-Hein K, Maier-Hein L (2018) Reconstruction of initial pressure from limited view photoacoustic images using deep learning. In: Photons plus ultrasound: imaging and sensing 2018, vol 10494, p 104942S. International Society for Optics and Photonics
Zurück zum Zitat Wang G (2016) A perspective on deep imaging. IEEE Access 4:8914–8924 Wang G (2016) A perspective on deep imaging. IEEE Access 4:8914–8924
Zurück zum Zitat Wang G, Kalra M, Murugan V, Xi Y, Gjesteby L, Getzin M, Yang Q, Cong W, Vannier M (2015) Vision 20/20: simultaneous CT-MRI—next chapter of multimodality imaging. Med Phys 42(10):5879–5889 Wang G, Kalra M, Murugan V, Xi Y, Gjesteby L, Getzin M, Yang Q, Cong W, Vannier M (2015) Vision 20/20: simultaneous CT-MRI—next chapter of multimodality imaging. Med Phys 42(10):5879–5889
Zurück zum Zitat Wang G, Ye JC, Mueller K, Fessler JA (2018) Image reconstruction is a new frontier of machine learning. IEEE Trans Med Imaging 37(6):1289–1296 Wang G, Ye JC, Mueller K, Fessler JA (2018) Image reconstruction is a new frontier of machine learning. IEEE Trans Med Imaging 37(6):1289–1296
Zurück zum Zitat Wang H, Wu N, Cai Y, Ren L, Zhao Z, Han G, Wang J (2019) Optimization of reconstruction accuracy of anomaly position based on stacked auto-encoder neural networks. IEEE Access 7:116578–116584 Wang H, Wu N, Cai Y, Ren L, Zhao Z, Han G, Wang J (2019) Optimization of reconstruction accuracy of anomaly position based on stacked auto-encoder neural networks. IEEE Access 7:116578–116584
Zurück zum Zitat Wang Z, Simoncelli EP, Bovik AC (2003) Multiscale structural similarity for image quality assessment. In: The thrity-seventh asilomar conference on signals, systems & computers, vol 2, pp 1398–1402. IEEE Wang Z, Simoncelli EP, Bovik AC (2003) Multiscale structural similarity for image quality assessment. In: The thrity-seventh asilomar conference on signals, systems & computers, vol 2, pp 1398–1402. IEEE
Zurück zum Zitat Wang S, Su Z, Ying L, Peng X, Zhu S, Liang F, Feng D, Liang D (2016) Accelerating magnetic resonance imaging via deep learning. In: 2016 IEEE 13th international symposium on biomedical imaging (ISBI), pp 514–517. IEEE Wang S, Su Z, Ying L, Peng X, Zhu S, Liang F, Feng D, Liang D (2016) Accelerating magnetic resonance imaging via deep learning. In: 2016 IEEE 13th international symposium on biomedical imaging (ISBI), pp 514–517. IEEE
Zurück zum Zitat Webb A, Kagadis GC (2003) Introduction to biomedical imaging. Med Phys 30(8):2267–2267 Webb A, Kagadis GC (2003) Introduction to biomedical imaging. Med Phys 30(8):2267–2267
Zurück zum Zitat Wells WM III, Viola P, Atsumi H, Nakajima S, Kikinis R (1996) Multi-modal volume registration by maximization of mutual information. Med Image Anal 1(1):35–51 Wells WM III, Viola P, Atsumi H, Nakajima S, Kikinis R (1996) Multi-modal volume registration by maximization of mutual information. Med Image Anal 1(1):35–51
Zurück zum Zitat Wen B, Ravishankar S, Pfister L, Bresler Y (2019) Transform learning for magnetic resonance image reconstruction: from model-based learning to building neural networks. arXiv preprint arXiv:1903.11431 Wen B, Ravishankar S, Pfister L, Bresler Y (2019) Transform learning for magnetic resonance image reconstruction: from model-based learning to building neural networks. arXiv preprint arXiv:​1903.​11431
Zurück zum Zitat Wolterink JM, Leiner T, Viergever MA, Išgum I (2017) Generative adversarial networks for noise reduction in low-dose CT. IEEE Trans Med Imaging 36(12):2536–2545 Wolterink JM, Leiner T, Viergever MA, Išgum I (2017) Generative adversarial networks for noise reduction in low-dose CT. IEEE Trans Med Imaging 36(12):2536–2545
Zurück zum Zitat Wu D, Kim K, Li Q (2019) Computationally efficient deep neural network for computed tomography image reconstruction. Med Phys 46(11):4763–4776 Wu D, Kim K, Li Q (2019) Computationally efficient deep neural network for computed tomography image reconstruction. Med Phys 46(11):4763–4776
Zurück zum Zitat Wu S, Gao Z, Liu Z, Luo J, Zhang H, Li S (2018) Direct reconstruction of ultrasound elastography using an end-to-end deep neural network. In: International conference on medical image computing and computer-assisted intervention, pp 374–382. Springer Wu S, Gao Z, Liu Z, Luo J, Zhang H, Li S (2018) Direct reconstruction of ultrasound elastography using an end-to-end deep neural network. In: International conference on medical image computing and computer-assisted intervention, pp 374–382. Springer
Zurück zum Zitat Würfl T, Hoffmann M, Christlein V, Breininger K, Huang Y, Unberath M, Maier AK (2018) Deep learning computed tomography: learning projection-domain weights from image domain in limited angle problems. IEEE Trans Med Imaging 37(6):1454–1463 Würfl T, Hoffmann M, Christlein V, Breininger K, Huang Y, Unberath M, Maier AK (2018) Deep learning computed tomography: learning projection-domain weights from image domain in limited angle problems. IEEE Trans Med Imaging 37(6):1454–1463
Zurück zum Zitat Xu Q, Yu H, Mou X, Zhang L, Hsieh J, Wang G (2012) Low-dose X-ray CT reconstruction via dictionary learning. IEEE Trans Med Imaging 31(9):1682–1697 Xu Q, Yu H, Mou X, Zhang L, Hsieh J, Wang G (2012) Low-dose X-ray CT reconstruction via dictionary learning. IEEE Trans Med Imaging 31(9):1682–1697
Zurück zum Zitat Yang G, Yu S, Dong H, Slabaugh G, Dragotti PL, Ye X, Liu F, Arridge S, Keegan J, Guo Y et al (2017a) DAGAN: deep de-aliasing generative adversarial networks for fast compressed sensing MRI reconstruction. IEEE Transactions on Medical Imaging 37(6):1310–1321 Yang G, Yu S, Dong H, Slabaugh G, Dragotti PL, Ye X, Liu F, Arridge S, Keegan J, Guo Y et al (2017a) DAGAN: deep de-aliasing generative adversarial networks for fast compressed sensing MRI reconstruction. IEEE Transactions on Medical Imaging 37(6):1310–1321
Zurück zum Zitat Yang B, Ying L, Tang J (2018) Artificial neural network enhanced bayesian pet image reconstruction. IEEE Trans Med imaging 37(6):1297–1309 Yang B, Ying L, Tang J (2018) Artificial neural network enhanced bayesian pet image reconstruction. IEEE Trans Med imaging 37(6):1297–1309
Zurück zum Zitat Yedder HB, BenTaieb A, Shokoufi M, Zahiremami A, Golnaraghi F, Hamarneh G (2018) Deep learning based image reconstruction for diffuse optical tomography. In: International workshop on machine learning for medical image reconstruction, pp 112–119. Springer Yedder HB, BenTaieb A, Shokoufi M, Zahiremami A, Golnaraghi F, Hamarneh G (2018) Deep learning based image reconstruction for diffuse optical tomography. In: International workshop on machine learning for medical image reconstruction, pp 112–119. Springer
Zurück zum Zitat Yedder HB, Shokoufi M, Cardoen B, Golnaraghi F, Hamarneh G (2019) Limited-angle diffuse optical tomography image reconstruction using deep learning. In: International conference on medical image computing and computer-assisted intervention, pp 66–74. Springer Yedder HB, Shokoufi M, Cardoen B, Golnaraghi F, Hamarneh G (2019) Limited-angle diffuse optical tomography image reconstruction using deep learning. In: International conference on medical image computing and computer-assisted intervention, pp 66–74. Springer
Zurück zum Zitat Yoon YH, Khan S, Huh J, Ye JC (2018) Efficient b-mode ultrasound image reconstruction from sub-sampled RF data using deep learning. IEEE Trans Med Imaging 38(2):325–336 Yoon YH, Khan S, Huh J, Ye JC (2018) Efficient b-mode ultrasound image reconstruction from sub-sampled RF data using deep learning. IEEE Trans Med Imaging 38(2):325–336
Zurück zum Zitat Yoo J, Sabir S, Heo D, Kim KH, Wahab A, Choi Y, Lee S-I, Chae EY, Kim HH, Bae YM et al. (2020) Deep learning diffuse optical tomography. IEEE Trans Med Imaging. 39(4):877–887 Yoo J, Sabir S, Heo D, Kim KH, Wahab A, Choi Y, Lee S-I, Chae EY, Kim HH, Bae YM et al. (2020) Deep learning diffuse optical tomography. IEEE Trans Med Imaging. 39(4):877–887
Zurück zum Zitat Zbontar J, Knoll F, Sriram A, Muckley MJ, Bruno M, Defazio A, Parente M, Geras KJ, Katsnelson J, Chandarana H et al (2018) FastMRI: an open dataset and benchmarks for accelerated MRI. arXiv preprint arXiv:1811.08839 Zbontar J, Knoll F, Sriram A, Muckley MJ, Bruno M, Defazio A, Parente M, Geras KJ, Katsnelson J, Chandarana H et al (2018) FastMRI: an open dataset and benchmarks for accelerated MRI. arXiv preprint arXiv:​1811.​08839
Zurück zum Zitat Zhang Y, Wang Y, Zhang W, Lin F, Pu Y, Zhou J (2016a) Statistical iterative reconstruction using adaptive fractional order regularization. Biomed Opt Express 7(3):1015–1029 Zhang Y, Wang Y, Zhang W, Lin F, Pu Y, Zhou J (2016a) Statistical iterative reconstruction using adaptive fractional order regularization. Biomed Opt Express 7(3):1015–1029
Zurück zum Zitat Zhang Y, Xi Y, Yang Q, Cong W, Zhou J, Wang G (2016b) Spectral CT reconstruction with image sparsity and spectral mean. IEEE Trans Comput Imaging 2(4):510–523MathSciNet Zhang Y, Xi Y, Yang Q, Cong W, Zhou J, Wang G (2016b) Spectral CT reconstruction with image sparsity and spectral mean. IEEE Trans Comput Imaging 2(4):510–523MathSciNet
Zurück zum Zitat Zhang H, Zeng D, Zhang H, Wang J, Liang Z, Ma J (2017) Applications of nonlocal means algorithm in low-dose X-ray CT image processing and reconstruction: a review. Med Phys 44(3):1168–1185 Zhang H, Zeng D, Zhang H, Wang J, Liang Z, Ma J (2017) Applications of nonlocal means algorithm in low-dose X-ray CT image processing and reconstruction: a review. Med Phys 44(3):1168–1185
Zurück zum Zitat Zhang Q, Liang D (2020) Visualization of fully connected layer weights in deep learning ct reconstruction. arXiv preprint arXiv:2002.06788 Zhang Q, Liang D (2020) Visualization of fully connected layer weights in deep learning ct reconstruction. arXiv preprint arXiv:​2002.​06788
Zurück zum Zitat Zhao B, Haldar JP, Christodoulou AG, Liang Z-P (2012) Image reconstruction from highly undersampled (k, t)-space data with joint partial separability and sparsity constraints. IEEE Trans Med Imaging 31(9):1809–1820 Zhao B, Haldar JP, Christodoulou AG, Liang Z-P (2012) Image reconstruction from highly undersampled (k, t)-space data with joint partial separability and sparsity constraints. IEEE Trans Med Imaging 31(9):1809–1820
Zurück zum Zitat Zhou B, Lin X, Eck B (2019) Limited angle tomography reconstruction: synthetic reconstruction via unsupervised sinogram adaptation. In: International conference on information processing in medical imaging, pp 141–152. Springer Zhou B, Lin X, Eck B (2019) Limited angle tomography reconstruction: synthetic reconstruction via unsupervised sinogram adaptation. In: International conference on information processing in medical imaging, pp 141–152. Springer
Zurück zum Zitat Zhu B, Liu JZ, Cauley SF, Rosen BR, Rosen MS (2018) Image reconstruction by domain-transform manifold learning. Nature 555(7697):487 Zhu B, Liu JZ, Cauley SF, Rosen BR, Rosen MS (2018) Image reconstruction by domain-transform manifold learning. Nature 555(7697):487
Zurück zum Zitat Zhu L, Liu Z, Han S (2019) Deep leakage from gradients. In: Advances in neural information processing systems, pp 14747–14756 Zhu L, Liu Z, Han S (2019) Deep leakage from gradients. In: Advances in neural information processing systems, pp 14747–14756
Metadaten
Titel
Deep learning for biomedical image reconstruction: a survey
verfasst von
Hanene Ben Yedder
Ben Cardoen
Ghassan Hamarneh
Publikationsdatum
05.08.2020
Verlag
Springer Netherlands
Erschienen in
Artificial Intelligence Review / Ausgabe 1/2021
Print ISSN: 0269-2821
Elektronische ISSN: 1573-7462
DOI
https://doi.org/10.1007/s10462-020-09861-2

Weitere Artikel der Ausgabe 1/2021

Artificial Intelligence Review 1/2021 Zur Ausgabe

Premium Partner