Skip to main content

2019 | OriginalPaper | Buchkapitel

17. Deep Learning for Functional Brain Connectivity: Are We There Yet?

verfasst von : Harish RaviPrakash, Arjun Watane, Sachin Jambawalikar, Ulas Bagci

Erschienen in: Deep Learning and Convolutional Neural Networks for Medical Imaging and Clinical Informatics

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The detection of behavioral disorders rooted in neurological structure and function is an important research goal for neuroimaging communities. Recently, deep learning has been used successfully in diagnosis and segmentation applications using anatomical magnetic resonance imaging (MRI). One of the reasons for its popularity is that with repeated nonlinear transformations, the algorithm is capable of learning complex patterns in the data. Another advantage is that the feature selection step commonly used with machine learning algorithms in neuroimaging applications is eliminated which could lead to less bias in the result. However, there has been little progress in the application of these black-box approaches to functional MRI (fMRI). In this study, we explore the use of deep learning methods in comparison with conventional machine learning classifiers as well as their ensembles to analyze fMRI scans. We compare the benefits of deep learning against an ensemble of classical machine learning classifiers with a suitable feature selection strategy. Specifically, we focus on a clinically important problem of Attention Deficit Hyperactivity Disorder (ADHD). Functional connectivity information is extracted from fMRI scans of ADHD and control patients (ADHD-200), and analysis is performed by applying a decision fusion of various classifiers—the support vector machine, support vector regression, elastic net, and random forest. We selectively include features by a nonparametric ranking method for feature selection. After initial classification is performed, the decisions are summed in various permutations for an ensemble classifier, and the final results are compared with the deep learning-based results. We achieved a maximum accuracy of 93.93% on the KKI dataset (a subset of the ADHD-200) and also identified significantly different connections in the brain between ADHD and control subjects. In the blind testing with different subsets of the target data (Peking-1), we achieved a maximum accuracy of 72.9%. In contrast, the deep learning-based approaches yielded a maximum accuracy of 70.5% on the Peking-1 dataset and 67.74% on the complete ADHD-200 dataset, significantly inferior to the classifier ensemble approach. With more data being made publicly available, deep learning in fMRI may show a strong potential but as of now deep learning does not provide a magical solution for fMRI-based diagnosis.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Danielson ML, Bitsko RH, Ghandour RM, Holbrook JR, Kogan MD, Blumberg SJ (2018) Prevalence of parent-reported ADHD diagnosis and associated treatment among US children and adolescents, 2016. J Clin Child Adolesc Psychol 47(2):199–212CrossRef Danielson ML, Bitsko RH, Ghandour RM, Holbrook JR, Kogan MD, Blumberg SJ (2018) Prevalence of parent-reported ADHD diagnosis and associated treatment among US children and adolescents, 2016. J Clin Child Adolesc Psychol 47(2):199–212CrossRef
2.
Zurück zum Zitat Biederman J (2005) Attention-deficit/hyperactivity disorder: a selective overview. Biol Psychiatry 57(11):1215–1220CrossRef Biederman J (2005) Attention-deficit/hyperactivity disorder: a selective overview. Biol Psychiatry 57(11):1215–1220CrossRef
3.
Zurück zum Zitat McKay KE, Halperin JM (2001) ADHD, aggression, and antisocial behavior across the lifespan. Ann N Y Acad Sci 931(1):84–96CrossRef McKay KE, Halperin JM (2001) ADHD, aggression, and antisocial behavior across the lifespan. Ann N Y Acad Sci 931(1):84–96CrossRef
4.
Zurück zum Zitat Merten EC, Cwik JC, Margraf J, Schneider S (2017) Overdiagnosis of mental disorders in children and adolescents (in developed countries). Child Adolesc Psychiatry Ment Health 11(1):5 Merten EC, Cwik JC, Margraf J, Schneider S (2017) Overdiagnosis of mental disorders in children and adolescents (in developed countries). Child Adolesc Psychiatry Ment Health 11(1):5
5.
Zurück zum Zitat Matthews PM, Honey GD, Bullmore ET (2006) Neuroimaging: applications of fMRI in translational medicine and clinical practice. Nat Rev Neurosci 7(9):732CrossRef Matthews PM, Honey GD, Bullmore ET (2006) Neuroimaging: applications of fMRI in translational medicine and clinical practice. Nat Rev Neurosci 7(9):732CrossRef
6.
Zurück zum Zitat Sabour S, Frosst N, Hinton GE (2017) Dynamic routing between capsules. Advances in neural information processing systems, pp 3856–3866 Sabour S, Frosst N, Hinton GE (2017) Dynamic routing between capsules. Advances in neural information processing systems, pp 3856–3866
7.
Zurück zum Zitat Spencer M, Eickholt J, Cheng J (2015) A deep learning network approach to ab initio protein secondary structure prediction. IEEE/ACM Trans Comput Biol Bioinform (TCBB) 12(1):103–112CrossRef Spencer M, Eickholt J, Cheng J (2015) A deep learning network approach to ab initio protein secondary structure prediction. IEEE/ACM Trans Comput Biol Bioinform (TCBB) 12(1):103–112CrossRef
8.
Zurück zum Zitat Cha YJ, Choi W, Büyüköztürk O (2017) Deep learning-based crack damage detection using convolutional neural networks. Comput-Aided Civ Infrastruct Eng 32(5):361–378CrossRef Cha YJ, Choi W, Büyüköztürk O (2017) Deep learning-based crack damage detection using convolutional neural networks. Comput-Aided Civ Infrastruct Eng 32(5):361–378CrossRef
9.
Zurück zum Zitat Khosravan N, Celik H, Turkbey B, Jones EC, Wood B, Bagci U (2019) A collaborative computer aided diagnosis (C-CAD) system with eye-tracking, sparse attentional model, and deep learning. Med Image Anal 51:101–115CrossRef Khosravan N, Celik H, Turkbey B, Jones EC, Wood B, Bagci U (2019) A collaborative computer aided diagnosis (C-CAD) system with eye-tracking, sparse attentional model, and deep learning. Med Image Anal 51:101–115CrossRef
10.
Zurück zum Zitat Silver D, Hubert T, Schrittwieser J, Antonoglou I, Lai M, Guez A, Lillicrap T (2017) Mastering chess and shogi by self-play with a general reinforcement learning algorithm. arXiv:1712.01815 Silver D, Hubert T, Schrittwieser J, Antonoglou I, Lai M, Guez A, Lillicrap T (2017) Mastering chess and shogi by self-play with a general reinforcement learning algorithm. arXiv:​1712.​01815
11.
Zurück zum Zitat Cai J, Lu L, Xie Y, Xing F, Yang L (2017) Pancreas segmentation in MRI using graph-based decision fusion on convolutional neural networks. In: International conference on medical image computing and computer-assisted intervention. Springer, Cham, pp 674–682CrossRef Cai J, Lu L, Xie Y, Xing F, Yang L (2017) Pancreas segmentation in MRI using graph-based decision fusion on convolutional neural networks. In: International conference on medical image computing and computer-assisted intervention. Springer, Cham, pp 674–682CrossRef
12.
Zurück zum Zitat Mitchell TM, Hutchinson R, Just MA, Niculescu RS, Pereira F, Wang X (2003) Classifying instantaneous cognitive states from fMRI data. In: AMIA annual symposium proceedings, vol 2003. American Medical Informatics Association, p 465 Mitchell TM, Hutchinson R, Just MA, Niculescu RS, Pereira F, Wang X (2003) Classifying instantaneous cognitive states from fMRI data. In: AMIA annual symposium proceedings, vol 2003. American Medical Informatics Association, p 465
13.
Zurück zum Zitat Du W, Calhoun VD, Li H, Ma S, Eichele T, Kiehl KA, Adali T (2012) High classification accuracy for schizophrenia with rest and task fMRI data. Front Hum Neurosci 6:145 Du W, Calhoun VD, Li H, Ma S, Eichele T, Kiehl KA, Adali T (2012) High classification accuracy for schizophrenia with rest and task fMRI data. Front Hum Neurosci 6:145
14.
Zurück zum Zitat Khazaee A, Ebrahimzadeh A, Babajani-Feremi A (2015) Identifying patients with Alzheimer’s disease using resting-state fMRI and graph theory. Clin Neurophysiol 126(11):2132–2141CrossRef Khazaee A, Ebrahimzadeh A, Babajani-Feremi A (2015) Identifying patients with Alzheimer’s disease using resting-state fMRI and graph theory. Clin Neurophysiol 126(11):2132–2141CrossRef
15.
Zurück zum Zitat Sanz-Arigita EJ, Schoonheim MM, Damoiseaux JS, Rombouts SA, Maris E, Barkhof F, Stam CJ (2010) Loss of ‘small-world’ networks in Alzheimer’s disease: graph analysis of FMRI resting-state functional connectivity. PloS One 5(11):e13788CrossRef Sanz-Arigita EJ, Schoonheim MM, Damoiseaux JS, Rombouts SA, Maris E, Barkhof F, Stam CJ (2010) Loss of ‘small-world’ networks in Alzheimer’s disease: graph analysis of FMRI resting-state functional connectivity. PloS One 5(11):e13788CrossRef
16.
Zurück zum Zitat Deshpande G, Libero L, Sreenivasan KR, Deshpande H, Kana RK (2013) Identification of neural connectivity signatures of autism using machine learning. Front Hum Neurosci 7:670 Deshpande G, Libero L, Sreenivasan KR, Deshpande H, Kana RK (2013) Identification of neural connectivity signatures of autism using machine learning. Front Hum Neurosci 7:670
17.
Zurück zum Zitat Sidhu GS, Asgarian N, Greiner R, Brown MR (2012) Kernel principal component analysis for dimensionality reduction in fMRI-based diagnosis of ADHD. Front Syst Neurosci 6:74 Sidhu GS, Asgarian N, Greiner R, Brown MR (2012) Kernel principal component analysis for dimensionality reduction in fMRI-based diagnosis of ADHD. Front Syst Neurosci 6:74
18.
Zurück zum Zitat Fekete T, Zach N, Mujica-Parodi LR, Turner MR (2013) Multiple kernel learning captures a systems-level functional connectivity biomarker signature in amyotrophic lateral sclerosis. PloS One 8(12):e85190CrossRef Fekete T, Zach N, Mujica-Parodi LR, Turner MR (2013) Multiple kernel learning captures a systems-level functional connectivity biomarker signature in amyotrophic lateral sclerosis. PloS One 8(12):e85190CrossRef
19.
Zurück zum Zitat Chu C, Hsu AL, Chou KH, Bandettini P, Lin C (2012) Alzheimer’s disease neuroimaging initiative. Does feature selection improve classification accuracy? Impact of sample size and feature selection on classification using anatomical magnetic resonance images. Neuroimage 60(1):59–70CrossRef Chu C, Hsu AL, Chou KH, Bandettini P, Lin C (2012) Alzheimer’s disease neuroimaging initiative. Does feature selection improve classification accuracy? Impact of sample size and feature selection on classification using anatomical magnetic resonance images. Neuroimage 60(1):59–70CrossRef
20.
Zurück zum Zitat Cabral C, Silveira M, Figueiredo P (2012) Decoding visual brain states from fMRI using an ensemble of classifiers. Pattern Recognit 45(6):2064–2074CrossRef Cabral C, Silveira M, Figueiredo P (2012) Decoding visual brain states from fMRI using an ensemble of classifiers. Pattern Recognit 45(6):2064–2074CrossRef
21.
Zurück zum Zitat Richiardi J, Eryilmaz H, Schwartz S, Vuilleumier P, Van De Ville D (2011) Decoding brain states from fMRI connectivity graphs. Neuroimage 56(2):616–626CrossRef Richiardi J, Eryilmaz H, Schwartz S, Vuilleumier P, Van De Ville D (2011) Decoding brain states from fMRI connectivity graphs. Neuroimage 56(2):616–626CrossRef
22.
Zurück zum Zitat Kuncheva LI, Rodríguez JJ (2010) Classifier ensembles for fMRI data analysis: an experiment. Magn Reson Imaging 28(4):583–593CrossRef Kuncheva LI, Rodríguez JJ (2010) Classifier ensembles for fMRI data analysis: an experiment. Magn Reson Imaging 28(4):583–593CrossRef
23.
Zurück zum Zitat Mortazi A, Karim R, Rhode K, Burt J, Bagci U (2017) CardiacNET: segmentation of left atrium and proximal pulmonary veins from MRI using multi-view CNN. In: International conference on medical image computing and computer-assisted intervention. Springer, Cham, pp 377–385 Mortazi A, Karim R, Rhode K, Burt J, Bagci U (2017) CardiacNET: segmentation of left atrium and proximal pulmonary veins from MRI using multi-view CNN. In: International conference on medical image computing and computer-assisted intervention. Springer, Cham, pp 377–385
25.
Zurück zum Zitat de Brebisson A, Montana G (2015) Deep neural networks for anatomical brain segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition workshops, pp 20–28 de Brebisson A, Montana G (2015) Deep neural networks for anatomical brain segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition workshops, pp 20–28
26.
Zurück zum Zitat Torosdagli N, Liberton DK, Verma P, Sincan M, Lee JS, Bagci U (2018) Deep geodesic learning for segmentation and anatomical landmarking. IEEE Trans Med Imaging Torosdagli N, Liberton DK, Verma P, Sincan M, Lee JS, Bagci U (2018) Deep geodesic learning for segmentation and anatomical landmarking. IEEE Trans Med Imaging
27.
Zurück zum Zitat Hussein S, Kandel P, Corral JE, Bolan CW, Wallace MB, Bagci U (2018) Deep multi-modal classification of intraductal papillary mucinous neoplasms (IPMN) with canonical correlation analysis. In: 2018 IEEE 15th international symposium on biomedical imaging (ISBI 2018). IEEE, pp 800–804 Hussein S, Kandel P, Corral JE, Bolan CW, Wallace MB, Bagci U (2018) Deep multi-modal classification of intraductal papillary mucinous neoplasms (IPMN) with canonical correlation analysis. In: 2018 IEEE 15th international symposium on biomedical imaging (ISBI 2018). IEEE, pp 800–804
29.
Zurück zum Zitat Suk HI, Shen D (2013) Deep learning-based feature representation for AD/MCI classification. In: International conference on medical image computing and computer-assisted intervention. Springer, Berlin, pp 583–590CrossRef Suk HI, Shen D (2013) Deep learning-based feature representation for AD/MCI classification. In: International conference on medical image computing and computer-assisted intervention. Springer, Berlin, pp 583–590CrossRef
30.
Zurück zum Zitat Liu M, Zhang J, Adeli E, Shen D (2018) Landmark-based deep multi-instance learning for brain disease diagnosis. Med Image Anal 43:157–168CrossRef Liu M, Zhang J, Adeli E, Shen D (2018) Landmark-based deep multi-instance learning for brain disease diagnosis. Med Image Anal 43:157–168CrossRef
31.
Zurück zum Zitat Khvostikov A, Aderghal K, Benois-Pineau J, Krylov A, Catheline G (2018) 3D CNN-based classification using sMRI and MD-DTI images for Alzheimer disease studies. arXiv:1801.05968 Khvostikov A, Aderghal K, Benois-Pineau J, Krylov A, Catheline G (2018) 3D CNN-based classification using sMRI and MD-DTI images for Alzheimer disease studies. arXiv:​1801.​05968
32.
Zurück zum Zitat Kawahara J, Brown CJ, Miller SP, Booth BG, Chau V, Grunau RE, Hamarneh G (2017) BrainNetCNN: convolutional neural networks for brain networks; towards predicting neurodevelopment. NeuroImage 146:1038–1049CrossRef Kawahara J, Brown CJ, Miller SP, Booth BG, Chau V, Grunau RE, Hamarneh G (2017) BrainNetCNN: convolutional neural networks for brain networks; towards predicting neurodevelopment. NeuroImage 146:1038–1049CrossRef
33.
Zurück zum Zitat Wen H, Shi J, Zhang Y, Lu KH, Cao J, Liu Z (2017) Neural encoding and decoding with deep learning for dynamic natural vision. Cereb Cortex 1–25 Wen H, Shi J, Zhang Y, Lu KH, Cao J, Liu Z (2017) Neural encoding and decoding with deep learning for dynamic natural vision. Cereb Cortex 1–25
34.
Zurück zum Zitat Horikawa T, Kamitani Y (2017) Generic decoding of seen and imagined objects using hierarchical visual features. Nat Commun 8:15037 Horikawa T, Kamitani Y (2017) Generic decoding of seen and imagined objects using hierarchical visual features. Nat Commun 8:15037
35.
Zurück zum Zitat Li X, Dvornek NC, Papademetris X, Zhuang J, Staib LH, Ventola P, Duncan JS (2018) 2-channel convolutional 3D deep neural network (2CC3D) for fMRI analysis: ASD classification and feature learning. In: 2018 IEEE 15th international symposium on biomedical imaging (ISBI 2018). IEEE, pp 1252–1255 Li X, Dvornek NC, Papademetris X, Zhuang J, Staib LH, Ventola P, Duncan JS (2018) 2-channel convolutional 3D deep neural network (2CC3D) for fMRI analysis: ASD classification and feature learning. In: 2018 IEEE 15th international symposium on biomedical imaging (ISBI 2018). IEEE, pp 1252–1255
36.
Zurück zum Zitat Li X, Dvornek NC, Zhuang J, Ventola P, Duncan JS (2018) Brain biomarker interpretation in ASD using deep learning and fMRI. In: International conference on medical image computing and computer-assisted intervention. Springer, Cham, pp 206–214CrossRef Li X, Dvornek NC, Zhuang J, Ventola P, Duncan JS (2018) Brain biomarker interpretation in ASD using deep learning and fMRI. In: International conference on medical image computing and computer-assisted intervention. Springer, Cham, pp 206–214CrossRef
37.
Zurück zum Zitat Yan W, Zhang H, Sui J, Shen D (2018) Deep chronnectome learning via full bidirectional long short-term memory networks for MCI diagnosis. In: International conference on medical image computing and computer-assisted intervention. Springer, Cham, pp 249–257CrossRef Yan W, Zhang H, Sui J, Shen D (2018) Deep chronnectome learning via full bidirectional long short-term memory networks for MCI diagnosis. In: International conference on medical image computing and computer-assisted intervention. Springer, Cham, pp 249–257CrossRef
38.
Zurück zum Zitat He T, Kong R, Holmes AJ, Sabuncu MR, Eickhoff SB, Bzdok D, Yeo BT (2018) Is deep learning better than kernel regression for functional connectivity prediction of fluid intelligence? In: 2018 international workshop on pattern recognition in neuroimaging (PRNI). IEEE, pp 1–4 He T, Kong R, Holmes AJ, Sabuncu MR, Eickhoff SB, Bzdok D, Yeo BT (2018) Is deep learning better than kernel regression for functional connectivity prediction of fluid intelligence? In: 2018 international workshop on pattern recognition in neuroimaging (PRNI). IEEE, pp 1–4
39.
Zurück zum Zitat Bellec P, Chu C, Chouinard-Decorte F, Benhajali Y, Margulies DS, Craddock RC (2017) The neuro bureau ADHD-200 preprocessed repository. Neuroimage 144:275–286CrossRef Bellec P, Chu C, Chouinard-Decorte F, Benhajali Y, Margulies DS, Craddock RC (2017) The neuro bureau ADHD-200 preprocessed repository. Neuroimage 144:275–286CrossRef
40.
Zurück zum Zitat Cox RW (1996) AFNI: software for analysis and visualization of functional magnetic resonance neuroimages. Comput Biomed Res 29(3):162–173CrossRef Cox RW (1996) AFNI: software for analysis and visualization of functional magnetic resonance neuroimages. Comput Biomed Res 29(3):162–173CrossRef
41.
Zurück zum Zitat Jenkinson M, Beckmann CF, Behrens TE, Woolrich MW, Smith SM (2012) FSL. Neuroimage 62(2):782–790CrossRef Jenkinson M, Beckmann CF, Behrens TE, Woolrich MW, Smith SM (2012) FSL. Neuroimage 62(2):782–790CrossRef
42.
Zurück zum Zitat Eklund A, Nichols TE, Knutsson H (2016) Cluster failure: why fMRI inferences for spatial extent have inflated false-positive rates. Proc Natl Acad Sci 201602413 Eklund A, Nichols TE, Knutsson H (2016) Cluster failure: why fMRI inferences for spatial extent have inflated false-positive rates. Proc Natl Acad Sci 201602413
43.
Zurück zum Zitat Xia M, Wang J, He Y (2013) BrainNet viewer: a network visualization tool for human brain connectomics. PloS One 8(7):e68910CrossRef Xia M, Wang J, He Y (2013) BrainNet viewer: a network visualization tool for human brain connectomics. PloS One 8(7):e68910CrossRef
44.
Zurück zum Zitat Holtmann M, Becker K, Kentner-Figura B, Schmidt MH (2003) Increased frequency of rolandic spikes in ADHD children. Epilepsia 44(9):1241–1244CrossRef Holtmann M, Becker K, Kentner-Figura B, Schmidt MH (2003) Increased frequency of rolandic spikes in ADHD children. Epilepsia 44(9):1241–1244CrossRef
45.
Zurück zum Zitat Schulz KP, Fan J, Tang CY, Newcorn JH, Buchsbaum MS, Cheung AM, Halperin JM (2004) Response inhibition in adolescents diagnosed with attention deficit hyperactivity disorder during childhood: an event-related FMRI study. Am J Psychiatry 161(9):1650–1657CrossRef Schulz KP, Fan J, Tang CY, Newcorn JH, Buchsbaum MS, Cheung AM, Halperin JM (2004) Response inhibition in adolescents diagnosed with attention deficit hyperactivity disorder during childhood: an event-related FMRI study. Am J Psychiatry 161(9):1650–1657CrossRef
46.
Zurück zum Zitat Valera EM, Faraone SV, Murray KE, Seidman LJ (2007) Meta-analysis of structural imaging findings in attention-deficit/hyperactivity disorder. Biol Psychiatry 61(12):1361–1369CrossRef Valera EM, Faraone SV, Murray KE, Seidman LJ (2007) Meta-analysis of structural imaging findings in attention-deficit/hyperactivity disorder. Biol Psychiatry 61(12):1361–1369CrossRef
47.
Zurück zum Zitat Smith AB, Taylor E, Brammer M, Toone B, Rubia K (2006) Task-specific hypoactivation in prefrontal and temporoparietal brain regions during motor inhibition and task switching in medication-naive children and adolescents with attention deficit hyperactivity disorder. Am J Psychiatry 163(6):1044–1051CrossRef Smith AB, Taylor E, Brammer M, Toone B, Rubia K (2006) Task-specific hypoactivation in prefrontal and temporoparietal brain regions during motor inhibition and task switching in medication-naive children and adolescents with attention deficit hyperactivity disorder. Am J Psychiatry 163(6):1044–1051CrossRef
48.
Zurück zum Zitat Norman L, Carlisi CO, Lukito S, Hart H, Mataix-Cols D, Radua J, Rubia K (2016) Comparative meta-analysis of functional and structural deficits in ADHD and OCD. JAMA Psychiatry 73:815–825CrossRef Norman L, Carlisi CO, Lukito S, Hart H, Mataix-Cols D, Radua J, Rubia K (2016) Comparative meta-analysis of functional and structural deficits in ADHD and OCD. JAMA Psychiatry 73:815–825CrossRef
49.
Zurück zum Zitat McCarthy H, Skokauskas N, Frodl T (2014) Identifying a consistent pattern of neural function in attention deficit hyperactivity disorder: a meta-analysis. Psychol Med 44(4):869–880CrossRef McCarthy H, Skokauskas N, Frodl T (2014) Identifying a consistent pattern of neural function in attention deficit hyperactivity disorder: a meta-analysis. Psychol Med 44(4):869–880CrossRef
50.
Zurück zum Zitat Goodfellow I, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, Ozair S, Bengio Y (2014) Generative adversarial nets. Advances in neural information processing systems, pp 2672–2680 Goodfellow I, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, Ozair S, Bengio Y (2014) Generative adversarial nets. Advances in neural information processing systems, pp 2672–2680
51.
Zurück zum Zitat Van Essen DC, Smith SM, Barch DM, Behrens TE, Yacoub E, Ugurbil K (2013) Wu-Minn HCP consortium. The WU-Minn human connectome project: an overview. Neuroimage 80:62–79CrossRef Van Essen DC, Smith SM, Barch DM, Behrens TE, Yacoub E, Ugurbil K (2013) Wu-Minn HCP consortium. The WU-Minn human connectome project: an overview. Neuroimage 80:62–79CrossRef
52.
Zurück zum Zitat Gorgolewski K, Esteban O, Schaefer G, Wandell B, Poldrack R (2017) OpenNeuro—a free online platform for sharing and analysis of neuroimaging data. In: Organization for human brain mapping. Vancouver, Canada, p 1677 Gorgolewski K, Esteban O, Schaefer G, Wandell B, Poldrack R (2017) OpenNeuro—a free online platform for sharing and analysis of neuroimaging data. In: Organization for human brain mapping. Vancouver, Canada, p 1677
Metadaten
Titel
Deep Learning for Functional Brain Connectivity: Are We There Yet?
verfasst von
Harish RaviPrakash
Arjun Watane
Sachin Jambawalikar
Ulas Bagci
Copyright-Jahr
2019
DOI
https://doi.org/10.1007/978-3-030-13969-8_17

Premium Partner