Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

08.04.2019 | Regular Paper | Ausgabe 1/2020

Journal of Cryptographic Engineering 1/2020

Deep learning mitigates but does not annihilate the need of aligned traces and a generalized ResNet model for side-channel attacks

Zeitschrift:
Journal of Cryptographic Engineering > Ausgabe 1/2020
Autoren:
Yuanyuan Zhou, François-Xavier Standaert
Wichtige Hinweise

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Abstract

We consider the question whether synchronization/alignment methods are still useful/necessary in the context of side-channel attacks exploiting deep learning algorithms. While earlier works have shown that such methods/algorithms have a remarkable tolerance to misaligned measurements, we answer positively and describe experimental case studies of side-channel attacks against a key transportation layer and an AES S-box where such a preprocessing remains beneficial (and sometimes necessary) to perform efficient key recoveries. Our results also introduce generalized residual networks as a powerful alternative to other deep learning tools (e.g., convolutional neural networks and multilayer perceptrons) that have been considered so far in the field of side-channel analysis. In our experimental case studies, it outperforms the other three published state-of-the-art neural network models for the data sets with and without alignment, and it even outperforms the published optimized CNN model with the public ASCAD data set. Conclusions are naturally implementation-specific and could differ with other data sets, other values for the hyper-parameters, other machine learning models and other alignment techniques.

Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten

Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Testen Sie jetzt 30 Tage kostenlos.

Literatur
Über diesen Artikel

Weitere Artikel der Ausgabe 1/2020

Journal of Cryptographic Engineering 1/2020 Zur Ausgabe

Premium Partner