Skip to main content

2019 | OriginalPaper | Buchkapitel

20. Deep Lesion Graph in the Wild: Relationship Learning and Organization of Significant Radiology Image Findings in a Diverse Large-Scale Lesion Database

verfasst von : Ke Yan, Xiaosong Wang, Le Lu, Ling Zhang, Adam P. Harrison, Mohammadhadi Bagheri, Ronald M. Summers

Erschienen in: Deep Learning and Convolutional Neural Networks for Medical Imaging and Clinical Informatics

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Radiologists in their daily work routinely find and annotate significant abnormalities on a large number of radiology images. Such abnormalities, or lesions, have collected over years and stored in hospitals’ picture archiving and communication systems. However, they are basically unsorted and lack semantic annotations like type and location. In this paper, we aim to organize and explore them by learning a deep feature representation for each lesion. A large-scale and comprehensive dataset, DeepLesion, is introduced for this task. DeepLesion contains bounding boxes and size measurements of over 32K lesions. To model their similarity relationship, we leverage multiple supervision information including types, self-supervised location coordinates, and sizes. They require little manual annotation effort but describe useful attributes of the lesions. Then, a triplet network is utilized to learn lesion embeddings with a sequential sampling strategy to depict their hierarchical similarity structure. Experiments show promising qualitative and quantitative results on lesion retrieval, clustering, and classification. The learned embeddings can be further employed to build a lesion graph for various clinically useful applications. An algorithm for intra-patient lesion matching is proposed and validated with experiments.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Belkin M, Niyogi P, Sindhwani V (2006) Manifold regularization: a geometric framework for learning from labeled and unlabeled examples. J Mach Learn Res 7:2399–2434 Belkin M, Niyogi P, Sindhwani V (2006) Manifold regularization: a geometric framework for learning from labeled and unlabeled examples. J Mach Learn Res 7:2399–2434
2.
3.
Zurück zum Zitat Bromley J, Guyon I, LeCun Y, Säckinger E, Shah R (1994) Signature verification using a “Siamese” time delay neural network. In: Advances in neural information processing systems, pp 737–744 Bromley J, Guyon I, LeCun Y, Säckinger E, Shah R (1994) Signature verification using a “Siamese” time delay neural network. In: Advances in neural information processing systems, pp 737–744
4.
Zurück zum Zitat Cai J, Tang Y, Lu L, Harrison AP, Yan K, Xiao J, Yang L, Summers RM (2018) Accurate weakly-supervised deep lesion segmentation using large-scale clinical annotations: slice-propagated 3D mask generation from 2D RECIST. In: MICCAI. http://arxiv.org/abs/1801.08614CrossRef Cai J, Tang Y, Lu L, Harrison AP, Yan K, Xiao J, Yang L, Summers RM (2018) Accurate weakly-supervised deep lesion segmentation using large-scale clinical annotations: slice-propagated 3D mask generation from 2D RECIST. In: MICCAI. http://​arxiv.​org/​abs/​1801.​08614CrossRef
6.
Zurück zum Zitat Chen X, Gupta A (2015) Webly supervised learning of convolutional networks. In: Proceedings of the IEEE international conference on computer vision, pp 1431–1439 Chen X, Gupta A (2015) Webly supervised learning of convolutional networks. In: Proceedings of the IEEE international conference on computer vision, pp 1431–1439
8.
9.
Zurück zum Zitat Cornegruta S, Bakewell R, Withey S, Montana G (2016) Modelling radiological language with bidirectional long short-term memory networks. arXiv:1609.08409 Cornegruta S, Bakewell R, Withey S, Montana G (2016) Modelling radiological language with bidirectional long short-term memory networks. arXiv:​1609.​08409
11.
Zurück zum Zitat Eisenhauer E, Therasse P, Bogaerts J, Schwartz LH, Sargent D, Ford R, Dancey J, Arbuck S, Gwyther S, Mooney M, Others (2009) New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1). Eur J Cancer 45(2):228–247 Eisenhauer E, Therasse P, Bogaerts J, Schwartz LH, Sargent D, Ford R, Dancey J, Arbuck S, Gwyther S, Mooney M, Others (2009) New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1). Eur J Cancer 45(2):228–247
12.
Zurück zum Zitat Esteva A, Kuprel B, Novoa RA, Ko J, Swetter SM, Blau HM, Thrun S (2017) Dermatologist-level classification of skin cancer with deep neural networks. Nature 542(7639):115–118CrossRef Esteva A, Kuprel B, Novoa RA, Ko J, Swetter SM, Blau HM, Thrun S (2017) Dermatologist-level classification of skin cancer with deep neural networks. Nature 542(7639):115–118CrossRef
13.
Zurück zum Zitat Everingham M, Van Gool L, Williams CK, Winn J, Zisserman A (2010) The pascal visual object classes (VOC) challenge. Int J Comput Vis 88(2):303–338CrossRef Everingham M, Van Gool L, Williams CK, Winn J, Zisserman A (2010) The pascal visual object classes (VOC) challenge. Int J Comput Vis 88(2):303–338CrossRef
14.
Zurück zum Zitat Gidaris S, Komodakis N (2015) Object detection via a multi-region and semantic segmentation-aware CNN model. In: Proceedings of the IEEE international conference on computer vision, pp 1134–1142 Gidaris S, Komodakis N (2015) Object detection via a multi-region and semantic segmentation-aware CNN model. In: Proceedings of the IEEE international conference on computer vision, pp 1134–1142
15.
Zurück zum Zitat Girshick R (2015) Fast R-CNN. In: Proceedings of the IEEE international conference on computer vision, pp 1440–1448 Girshick R (2015) Fast R-CNN. In: Proceedings of the IEEE international conference on computer vision, pp 1440–1448
17.
Zurück zum Zitat Hofmanninger J, Krenn M, Holzer M, Schlegl T, Prosch H, Langs G (2016) Unsupervised identification of clinically relevant clusters in routine imaging data. In: International conference on medical image computing and computer-assisted intervention. Springer, Berlin, pp 192–200CrossRef Hofmanninger J, Krenn M, Holzer M, Schlegl T, Prosch H, Langs G (2016) Unsupervised identification of clinically relevant clusters in routine imaging data. In: International conference on medical image computing and computer-assisted intervention. Springer, Berlin, pp 192–200CrossRef
20.
Zurück zum Zitat Krause J, Sapp B, Howard A, Zhou H, Toshev A, Duerig T, Philbin J, Fei-Fei L (2016) The unreasonable effectiveness of noisy data for fine-grained recognition. In: European conference on computer vision. Springer, Berlin, pp 301–320CrossRef Krause J, Sapp B, Howard A, Zhou H, Toshev A, Duerig T, Philbin J, Fei-Fei L (2016) The unreasonable effectiveness of noisy data for fine-grained recognition. In: European conference on computer vision. Springer, Berlin, pp 301–320CrossRef
21.
Zurück zum Zitat Lee DH (2013) Pseudo-label: the simple and efficient semi-supervised learning method for deep neural networks. In: Workshop on challenges in representation learning, ICML, vol 3, p 2 Lee DH (2013) Pseudo-label: the simple and efficient semi-supervised learning method for deep neural networks. In: Workshop on challenges in representation learning, ICML, vol 3, p 2
23.
Zurück zum Zitat Lin TY, Maire M, Belongie S, Hays J, Perona P, Ramanan D, Dollár P, Zitnick CL (2014) Microsoft COCO: common objects in context. In: European conference on computer vision. Springer, Berlin, pp 740–755CrossRef Lin TY, Maire M, Belongie S, Hays J, Perona P, Ramanan D, Dollár P, Zitnick CL (2014) Microsoft COCO: common objects in context. In: European conference on computer vision. Springer, Berlin, pp 740–755CrossRef
27.
Zurück zum Zitat Moltz JH, D’Anastasi M, Kießling A, Dos Santos DP, Schülke C, Peitgen HO (2012) Workflow-centred evaluation of an automatic lesion tracking software for chemotherapy monitoring by CT. Eur Radiol 22(12):2759–2767CrossRef Moltz JH, D’Anastasi M, Kießling A, Dos Santos DP, Schülke C, Peitgen HO (2012) Workflow-centred evaluation of an automatic lesion tracking software for chemotherapy monitoring by CT. Eur Radiol 22(12):2759–2767CrossRef
28.
Zurück zum Zitat Moltz JH, Schwier M, Peitgen HO (2009) A general framework for automatic detection of matching lesions in follow-up CT. In: IEEE international symposium on biomedical imaging: from nano to macro, 2009, ISBI’09. IEEE, pp 843–846 Moltz JH, Schwier M, Peitgen HO (2009) A general framework for automatic detection of matching lesions in follow-up CT. In: IEEE international symposium on biomedical imaging: from nano to macro, 2009, ISBI’09. IEEE, pp 843–846
29.
Zurück zum Zitat Oh Song H, Xiang Y, Jegelka S, Savarese S (2016) Deep metric learning via lifted structured feature embedding. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 4004–4012 Oh Song H, Xiang Y, Jegelka S, Savarese S (2016) Deep metric learning via lifted structured feature embedding. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 4004–4012
31.
Zurück zum Zitat Schroff F, Kalenichenko D, Philbin J (2015) FaceNet: a unified embedding for face recognition and clustering. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 815–823 Schroff F, Kalenichenko D, Philbin J (2015) FaceNet: a unified embedding for face recognition and clustering. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 815–823
32.
Zurück zum Zitat Setio AAA, Traverso A, De Bel T, Berens MS, van den Bogaard C, Cerello P, Chen H, Dou Q, Fantacci ME, Geurts B et al (2017) Validation, comparison, and combination of algorithms for automatic detection of pulmonary nodules in computed tomography images: the LUNA16 challenge. Med Image Anal 42:1–13CrossRef Setio AAA, Traverso A, De Bel T, Berens MS, van den Bogaard C, Cerello P, Chen H, Dou Q, Fantacci ME, Geurts B et al (2017) Validation, comparison, and combination of algorithms for automatic detection of pulmonary nodules in computed tomography images: the LUNA16 challenge. Med Image Anal 42:1–13CrossRef
33.
Zurück zum Zitat Sevenster M, Travis AR, Ganesh RK, Liu P, Kose U, Peters J, Chang PJ (2015) Improved efficiency in clinical workflow of reporting measured oncology lesions via pacs-integrated lesion tracking tool. Am J Roentgenol 204(3):576–583CrossRef Sevenster M, Travis AR, Ganesh RK, Liu P, Kose U, Peters J, Chang PJ (2015) Improved efficiency in clinical workflow of reporting measured oncology lesions via pacs-integrated lesion tracking tool. Am J Roentgenol 204(3):576–583CrossRef
34.
Zurück zum Zitat Shin HC, Lu L, Kim L, Seff A, Yao J, Summers R (2016) Interleaved text/image deep mining on a large-scale radiology database for automated image interpretation. J Mach Learn Res 17(1–31):2MathSciNet Shin HC, Lu L, Kim L, Seff A, Yao J, Summers R (2016) Interleaved text/image deep mining on a large-scale radiology database for automated image interpretation. J Mach Learn Res 17(1–31):2MathSciNet
36.
Zurück zum Zitat Silva JS, Cancela J, Teixeira L (2011) Fast volumetric registration method for tumor follow-up in pulmonary CT exams. J Appl Clin Med Phys 12(2):362–375CrossRef Silva JS, Cancela J, Teixeira L (2011) Fast volumetric registration method for tumor follow-up in pulmonary CT exams. J Appl Clin Med Phys 12(2):362–375CrossRef
37.
Zurück zum Zitat Simonyan K, Zisserman A (2015) Very deep convolutional networks for large-scale image recognition. In: ICLR 2015 Simonyan K, Zisserman A (2015) Very deep convolutional networks for large-scale image recognition. In: ICLR 2015
38.
Zurück zum Zitat Sohn K (2016) Improved deep metric learning with multi-class N-pair loss objective. In: Neural information processing systems, pp 1–9 Sohn K (2016) Improved deep metric learning with multi-class N-pair loss objective. In: Neural information processing systems, pp 1–9
39.
Zurück zum Zitat Son J, Baek M, Cho M, Han B (2017) Multi-object tracking with quadruplet convolutional neural networks. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 5620–5629 Son J, Baek M, Cho M, Han B (2017) Multi-object tracking with quadruplet convolutional neural networks. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 5620–5629
40.
Zurück zum Zitat Song HO, Jegelka S, Rathod V, Murphy K (2017) Deep metric learning via facility location. In: IEEE CVPR Song HO, Jegelka S, Rathod V, Murphy K (2017) Deep metric learning via facility location. In: IEEE CVPR
43.
Zurück zum Zitat Teramoto A, Fujita H, Yamamuro O, Tamaki T (2016) Automated detection of pulmonary nodules in PET/CT images: ensemble false-positive reduction using a convolutional neural network technique. Med Phys 43(6):2821–2827CrossRef Teramoto A, Fujita H, Yamamuro O, Tamaki T (2016) Automated detection of pulmonary nodules in PET/CT images: ensemble false-positive reduction using a convolutional neural network technique. Med Phys 43(6):2821–2827CrossRef
44.
Zurück zum Zitat Tsochatzidis L, Zagoris K, Arikidis N, Karahaliou A, Costaridou L, Pratikakis I (2017) Computer-aided diagnosis of mammographic masses based on a supervised content-based image retrieval approach. Pattern Recognit Tsochatzidis L, Zagoris K, Arikidis N, Karahaliou A, Costaridou L, Pratikakis I (2017) Computer-aided diagnosis of mammographic masses based on a supervised content-based image retrieval approach. Pattern Recognit
45.
Zurück zum Zitat Vivanti R (2015) Automatic liver tumor segmentation in follow-up ct studies using convolutional neural networks. In: Proceedings of the patch-based methods in medical image processing workshop Vivanti R (2015) Automatic liver tumor segmentation in follow-up ct studies using convolutional neural networks. In: Proceedings of the patch-based methods in medical image processing workshop
46.
Zurück zum Zitat Wang X, Lu L, Shin HC, Kim L, Bagheri M, Nogues I, Yao J, Summers RM (2017) Unsupervised joint mining of deep features and image labels for large-scale radiology image categorization and scene recognition. In: 2017 IEEE winter conference on applications of computer vision (WACV). IEEE, pp 998–1007 Wang X, Lu L, Shin HC, Kim L, Bagheri M, Nogues I, Yao J, Summers RM (2017) Unsupervised joint mining of deep features and image labels for large-scale radiology image categorization and scene recognition. In: 2017 IEEE winter conference on applications of computer vision (WACV). IEEE, pp 998–1007
48.
Zurück zum Zitat Wang Z, Yin Y, Shi J, Fang W, Li H, Wang X (2017) Zoom-in-Net: deep mining lesions for diabetic retinopathy detection. Springer International Publishing, Berlin, pp 267–275CrossRef Wang Z, Yin Y, Shi J, Fang W, Li H, Wang X (2017) Zoom-in-Net: deep mining lesions for diabetic retinopathy detection. Springer International Publishing, Berlin, pp 267–275CrossRef
50.
Zurück zum Zitat Yan K, Bagheri M, Summers RM (2018) 3D context enhanced region-based convolutional neural network for end-to-end lesion detection. In: MICCAI, pp 511–519 Yan K, Bagheri M, Summers RM (2018) 3D context enhanced region-based convolutional neural network for end-to-end lesion detection. In: MICCAI, pp 511–519
52.
Zurück zum Zitat Yan K, Wang X, Lu L, Zhang L, Harrison A, Bagheri M, Summers R (2018) Deep lesion graphs in the wild: relationship learning and organization of significant radiology image findings in a diverse large-scale lesion database. In: CVPR. http://arxiv.org/abs/1711.10535 Yan K, Wang X, Lu L, Zhang L, Harrison A, Bagheri M, Summers R (2018) Deep lesion graphs in the wild: relationship learning and organization of significant radiology image findings in a diverse large-scale lesion database. In: CVPR. http://​arxiv.​org/​abs/​1711.​10535
53.
Zurück zum Zitat Zhang H, Shang X, Yang W, Xu H, Luan H, Chua TS (2016) Online collaborative learning for open-vocabulary visual classifiers. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 2809–2817 Zhang H, Shang X, Yang W, Xu H, Luan H, Chua TS (2016) Online collaborative learning for open-vocabulary visual classifiers. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 2809–2817
54.
Zurück zum Zitat Zhang X, Zhou F, Lin Y, Zhang S (2016) Embedding label structures for fine-grained feature representation. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 1114–1123 Zhang X, Zhou F, Lin Y, Zhang S (2016) Embedding label structures for fine-grained feature representation. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 1114–1123
56.
Zurück zum Zitat Zhu X, Ghahramani Z (2002) Learning from labeled and unlabeled data with label propagation. Technical report CMU-CALD-02-107, Carnegie Mellon University Zhu X, Ghahramani Z (2002) Learning from labeled and unlabeled data with label propagation. Technical report CMU-CALD-02-107, Carnegie Mellon University
Metadaten
Titel
Deep Lesion Graph in the Wild: Relationship Learning and Organization of Significant Radiology Image Findings in a Diverse Large-Scale Lesion Database
verfasst von
Ke Yan
Xiaosong Wang
Le Lu
Ling Zhang
Adam P. Harrison
Mohammadhadi Bagheri
Ronald M. Summers
Copyright-Jahr
2019
DOI
https://doi.org/10.1007/978-3-030-13969-8_20

Premium Partner