Skip to main content
Erschienen in: Pattern Analysis and Applications 3/2023

27.06.2023 | Short Paper

Deep neural networks for rank-consistent ordinal regression based on conditional probabilities

verfasst von: Xintong Shi, Wenzhi Cao, Sebastian Raschka

Erschienen in: Pattern Analysis and Applications | Ausgabe 3/2023

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In recent times, deep neural networks achieved outstanding predictive performance on various classification and pattern recognition tasks. However, many real-world prediction problems have ordinal response variables, and this ordering information is ignored by conventional classification losses such as the multi-category cross-entropy. Ordinal regression methods for deep neural networks address this. One such method is the CORAL method, which is based on an earlier binary label extension framework and achieves rank consistency among its output layer tasks by imposing a weight-sharing constraint. However, while earlier experiments showed that CORAL’s rank consistency is beneficial for performance, it is limited by a weight-sharing constraint in a neural network’s fully connected output layer, which may restrict the expressiveness and capacity of a network trained using CORAL. We propose a new method for rank-consistent ordinal regression without this limitation. Our rank-consistent ordinal regression framework (CORN) achieves rank consistency by a novel training scheme. This training scheme uses conditional training sets to obtain the unconditional rank probabilities through applying the chain rule for conditional probability distributions. Experiments on various datasets demonstrate the efficacy of the proposed method to utilize the ordinal target information, and the absence of the weight-sharing restriction improves the performance substantially compared to the CORAL reference approach. Additionally, the suggested CORN method is not tied to any specific architecture and can be utilized with any deep neural network classifier to train it for ordinal regression tasks.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Fußnoten
1
When \(k=1\), \(f_k\left( {\textbf{x}}^{[i]} \right)\) represents the initial unconditional probability \(f_1\left( {\textbf{x}}^{[i]} \right) = {\hat{P}}\left( y^{[i]} > r_1\right)\).
 
2
When training a neural network using backpropagation, instead of minimizing the \(K-1\) loss functions corresponding to the \(K-1\) conditional probabilities on each conditional subset separately, we can minimize their sum, as shown in the loss function we propose in Sect. 3.5, to optimize the binary tasks simultaneously.
 
Literatur
1.
Zurück zum Zitat Li L, Lin HT (2007) In: Advances in neural information processing systems, pp 865–872 Li L, Lin HT (2007) In: Advances in neural information processing systems, pp 865–872
2.
Zurück zum Zitat Niu Z, Zhou M, Wang L, Gao X, Hua G (2016) In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 4920–4928 Niu Z, Zhou M, Wang L, Gao X, Hua G (2016) In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 4920–4928
3.
Zurück zum Zitat Cao W, Mirjalili V, Raschka S (2020) Rank consistent ordinal regression for neural networks with application to age estimation. Pattern Recognit Lett 140:325–331CrossRef Cao W, Mirjalili V, Raschka S (2020) Rank consistent ordinal regression for neural networks with application to age estimation. Pattern Recognit Lett 140:325–331CrossRef
4.
Zurück zum Zitat McCullagh P (1980) Regression models for ordinal data. J R Stat Soc Ser B (Methodological) 109–142 McCullagh P (1980) Regression models for ordinal data. J R Stat Soc Ser B (Methodological) 109–142
5.
Zurück zum Zitat Crammer K, Singer Y (2002) In: Advances in neural information processing systems, pp 641–647 Crammer K, Singer Y (2002) In: Advances in neural information processing systems, pp 641–647
6.
Zurück zum Zitat Shashua A, Levin A et al (2003) Ranking with large margin principle: two approaches. Adv Neural Inf Process Syst 961–968 Shashua A, Levin A et al (2003) Ranking with large margin principle: two approaches. Adv Neural Inf Process Syst 961–968
7.
Zurück zum Zitat Rajaram S, Garg A, Zhou XS, Huang TS (2003) In: Proceedings of the European Conference on Machine Learning. Springer, pp 301–312 Rajaram S, Garg A, Zhou XS, Huang TS (2003) In: Proceedings of the European Conference on Machine Learning. Springer, pp 301–312
8.
Zurück zum Zitat Chu W, Keerthi SS (2005) In: Proceedings of the international conference on machine learning. ACM, pp 145–152 Chu W, Keerthi SS (2005) In: Proceedings of the international conference on machine learning. ACM, pp 145–152
9.
Zurück zum Zitat Zhu H, Shan H, Zhang Y, Che L, Xu X, Zhang J, Shi J, Wang FY (2021) Convolutional ordinal regression forest for image ordinal estimation. In: IEEE transactions on neural networks and learning systems Zhu H, Shan H, Zhang Y, Che L, Xu X, Zhang J, Shi J, Wang FY (2021) Convolutional ordinal regression forest for image ordinal estimation. In: IEEE transactions on neural networks and learning systems
10.
Zurück zum Zitat Diaz R, Marathe A (2019) In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 4738–4747 Diaz R, Marathe A (2019) In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 4738–4747
11.
Zurück zum Zitat Suárez JL, García S, Herrera F (2021) Ordinal regression with explainable distance metric learning based on ordered sequences. Mach Learn 1–34 Suárez JL, García S, Herrera F (2021) Ordinal regression with explainable distance metric learning based on ordered sequences. Mach Learn 1–34
12.
Zurück zum Zitat Petersen F, Borgelt C, Kuehne H, Deussen O (2021) In: International conference on machine learning Petersen F, Borgelt C, Kuehne H, Deussen O (2021) In: International conference on machine learning
13.
Zurück zum Zitat Joachims T (2002) In: Proceedings of the eighth ACM SIGKDD international conference on knowledge discovery and data mining, pp 133–142 Joachims T (2002) In: Proceedings of the eighth ACM SIGKDD international conference on knowledge discovery and data mining, pp 133–142
14.
Zurück zum Zitat Liu Y, Kong AWK, Goh CK (2018) In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 831–839 Liu Y, Kong AWK, Goh CK (2018) In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 831–839
15.
Zurück zum Zitat Ricanek K, Tesafaye T (2006) In: Proceedings of the IEEE conference on automatic face and gesture recognition, pp 341–345 Ricanek K, Tesafaye T (2006) In: Proceedings of the IEEE conference on automatic face and gesture recognition, pp 341–345
16.
Zurück zum Zitat Sagonas C, Antonakos E, Tzimiropoulos G, Zafeiriou S, Pantic M (2016) 300 faces in-the-wild challenge: database and results. Image Vis Comput 47:3–18CrossRef Sagonas C, Antonakos E, Tzimiropoulos G, Zafeiriou S, Pantic M (2016) 300 faces in-the-wild challenge: database and results. Image Vis Comput 47:3–18CrossRef
17.
Zurück zum Zitat Raschka S (2018) MLxtend: providing machine learning and data science utilities and extensions to Python’s scientific computing stack. J Open Source Softw 3(24):1–2CrossRef Raschka S (2018) MLxtend: providing machine learning and data science utilities and extensions to Python’s scientific computing stack. J Open Source Softw 3(24):1–2CrossRef
18.
Zurück zum Zitat Schifanella R, Redi M, Aiello LM (2015) In: International AAAI conference on web and social media Schifanella R, Redi M, Aiello LM (2015) In: International AAAI conference on web and social media
19.
Zurück zum Zitat He K, Zhang X, Ren S, Sun J (2016) In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 770–778 He K, Zhang X, Ren S, Sun J (2016) In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 770–778
20.
Zurück zum Zitat Maas AL, Hannun AY, Ng AY, et al (2013) In: Proc. icml, vol 30. Citeseer, p 3 Maas AL, Hannun AY, Ng AY, et al (2013) In: Proc. icml, vol 30. Citeseer, p 3
21.
Zurück zum Zitat Loshchilov I, Hutter F (2019) In: International conference on learning representations (Poster) Loshchilov I, Hutter F (2019) In: International conference on learning representations (Poster)
22.
Zurück zum Zitat Kingma DP, Ba J (2015) In: Bengio Y, LeCun Y (eds) International conference on learning representations, pp 1–8 Kingma DP, Ba J (2015) In: Bengio Y, LeCun Y (eds) International conference on learning representations, pp 1–8
23.
Zurück zum Zitat Paszke A, Gross S, Massa F, Lerer A, Bradbury J, Chanan G, Killeen T, Lin Z, Gimelshein N, Antiga L, Desmaison A, Kopf A, Yang E, DeVito Z, Raison M, Tejani A, Chilamkurthy S, Steiner B, Fang L, Bai J, Chintala S (2019) In: Advances in neural information processing systems, vol 32, pp 8024–8035 Paszke A, Gross S, Massa F, Lerer A, Bradbury J, Chanan G, Killeen T, Lin Z, Gimelshein N, Antiga L, Desmaison A, Kopf A, Yang E, DeVito Z, Raison M, Tejani A, Chilamkurthy S, Steiner B, Fang L, Bai J, Chintala S (2019) In: Advances in neural information processing systems, vol 32, pp 8024–8035
24.
Zurück zum Zitat Simonyan K, Zisserman A (2014) Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 Simonyan K, Zisserman A (2014) Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:​1409.​1556
25.
Zurück zum Zitat Deng J, Dong W, Socher R, Li LJ, Li K, Fei-Fei L (2009) In: 2009 IEEE conference on computer vision and pattern recognition, IEEE, pp 248–255 Deng J, Dong W, Socher R, Li LJ, Li K, Fei-Fei L (2009) In: 2009 IEEE conference on computer vision and pattern recognition, IEEE, pp 248–255
Metadaten
Titel
Deep neural networks for rank-consistent ordinal regression based on conditional probabilities
verfasst von
Xintong Shi
Wenzhi Cao
Sebastian Raschka
Publikationsdatum
27.06.2023
Verlag
Springer London
Erschienen in
Pattern Analysis and Applications / Ausgabe 3/2023
Print ISSN: 1433-7541
Elektronische ISSN: 1433-755X
DOI
https://doi.org/10.1007/s10044-023-01181-9

Weitere Artikel der Ausgabe 3/2023

Pattern Analysis and Applications 3/2023 Zur Ausgabe

Premium Partner