Skip to main content
Erschienen in: Journal of Nondestructive Evaluation 1/2021

01.03.2021

Defect Localization Using Nonlinear Lamb Wave Mixing Technique

verfasst von: Mohammed Aslam, Praveen Nagarajan, Mini Remanan

Erschienen in: Journal of Nondestructive Evaluation | Ausgabe 1/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Structural health monitoring using nonlinear guided waves have found to be of great importance. The detection of micro/fatigue cracks in the early stage is essential to avoid catastrophic failures. This paper presents a defect localization technique using nonlinear interaction primary Lamb wave modes. The nonlinearity employed here is due to clapping behaviour of crack surfaces. Two counter-propagating Lamb waves with dissimilar frequencies are allowed to mix at various locations. The results show that the sensitivity of nonlinearity due to crack wave interaction increases when Lamb wave mixing occurs at the fault zone. To study the extent of nonlinearity on damage size, studies were also conducted on plates with different crack parameters. The study reveals that the nonlinear Lamb wave mixing technique can be used effectively to detect and localize micro-crack in plate-like structures.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Santoni, G.B., Yu, L., Xu, B., Giurgiutiu, V.: Lamb wave-mode tuning of piezoelectric wafer active sensors for structural health monitoring. J. Vib. Acoust. 129, 752–762 (2007)CrossRef Santoni, G.B., Yu, L., Xu, B., Giurgiutiu, V.: Lamb wave-mode tuning of piezoelectric wafer active sensors for structural health monitoring. J. Vib. Acoust. 129, 752–762 (2007)CrossRef
2.
Zurück zum Zitat Mitra, M., Gopalakrishnan, S.: Guided wave based structural health monitoring: a review. Smart Mater. Struct. 25, 053001 (2016)CrossRef Mitra, M., Gopalakrishnan, S.: Guided wave based structural health monitoring: a review. Smart Mater. Struct. 25, 053001 (2016)CrossRef
3.
Zurück zum Zitat Pei, N., Bond, L.J.: Higher order acoustoelastic Lamb wave propagation in stressed plates. J. Acoust. Soc. Am. 140, 3834–3843 (2016)CrossRef Pei, N., Bond, L.J.: Higher order acoustoelastic Lamb wave propagation in stressed plates. J. Acoust. Soc. Am. 140, 3834–3843 (2016)CrossRef
4.
Zurück zum Zitat Tua, P.S., Quek, S.T., Wang, Q.: Detection of cracks in plates using Piezo-actuated Lamb waves. Smart Mater. Struct. 13, 643 (2004)CrossRef Tua, P.S., Quek, S.T., Wang, Q.: Detection of cracks in plates using Piezo-actuated Lamb waves. Smart Mater. Struct. 13, 643 (2004)CrossRef
5.
Zurück zum Zitat Venugopal, V.P., Wang, G.: Modeling and analysis of Lamb wave propagation in a beam under lead zirconate titanate actuation and sensing. J. Intell. Mater. Syst. Struct. 26, 1679–1698 (2015)CrossRef Venugopal, V.P., Wang, G.: Modeling and analysis of Lamb wave propagation in a beam under lead zirconate titanate actuation and sensing. J. Intell. Mater. Syst. Struct. 26, 1679–1698 (2015)CrossRef
6.
Zurück zum Zitat Zhang, G., Gao, W., Song, G., Song, Y.: An imaging algorithm for damage detection with dispersion compensation using piezoceramic induced lamb waves. Smart Mater. Struct. 26, 025017 (2016)CrossRef Zhang, G., Gao, W., Song, G., Song, Y.: An imaging algorithm for damage detection with dispersion compensation using piezoceramic induced lamb waves. Smart Mater. Struct. 26, 025017 (2016)CrossRef
7.
Zurück zum Zitat Wang, D., Zhang, W., Wang, X., Sun, B.: Lamb-wave-based tomographic imaging techniques for hole-edge corrosion monitoring in plate structures. Materials 9, 916 (2016)CrossRef Wang, D., Zhang, W., Wang, X., Sun, B.: Lamb-wave-based tomographic imaging techniques for hole-edge corrosion monitoring in plate structures. Materials 9, 916 (2016)CrossRef
8.
Zurück zum Zitat Leleux, A., Micheau, P., Castaings, M.: Long range detection of defects in composite plates using Lamb waves generated and detected by ultrasonic phased array probes. J. Nondestr. Eval. 32, 200–214 (2013)CrossRef Leleux, A., Micheau, P., Castaings, M.: Long range detection of defects in composite plates using Lamb waves generated and detected by ultrasonic phased array probes. J. Nondestr. Eval. 32, 200–214 (2013)CrossRef
9.
Zurück zum Zitat Ghadami, A., Behzad, M., Mirdamadi, H.R.: A mode conversion-based algorithm for detecting rectangular notch parameters in plates using Lamb waves. Arch. Appl. Mech. 85, 793–804 (2015)CrossRef Ghadami, A., Behzad, M., Mirdamadi, H.R.: A mode conversion-based algorithm for detecting rectangular notch parameters in plates using Lamb waves. Arch. Appl. Mech. 85, 793–804 (2015)CrossRef
10.
Zurück zum Zitat Ebrahimkhanlou, A., Dubuc, B., Salamone, S.: Damage localization in metallic plate structures using edge-reflected lamb waves. Smart Mater. Struct. 25, 085035 (2016)CrossRef Ebrahimkhanlou, A., Dubuc, B., Salamone, S.: Damage localization in metallic plate structures using edge-reflected lamb waves. Smart Mater. Struct. 25, 085035 (2016)CrossRef
11.
Zurück zum Zitat Mori, N., Biwa, S.: Transmission characteristics of the S0 and A0 Lamb waves at contacting edges of plates. Ultrasonics 81, 93–99 (2017)CrossRef Mori, N., Biwa, S.: Transmission characteristics of the S0 and A0 Lamb waves at contacting edges of plates. Ultrasonics 81, 93–99 (2017)CrossRef
12.
Zurück zum Zitat Soleimanpour, R., Ng, C.T.: Scattering of the fundamental anti-symmetric Lamb wave at through-thickness notches in isotropic plates. J. Civil Struct. Health Monit. 6, 447–459 (2016)CrossRef Soleimanpour, R., Ng, C.T.: Scattering of the fundamental anti-symmetric Lamb wave at through-thickness notches in isotropic plates. J. Civil Struct. Health Monit. 6, 447–459 (2016)CrossRef
13.
Zurück zum Zitat Sohn, H.: Effects of environmental and operational variability on structural health monitoring. Philos. Trans. R. Soc. A 365, 539–560 (2006)CrossRef Sohn, H.: Effects of environmental and operational variability on structural health monitoring. Philos. Trans. R. Soc. A 365, 539–560 (2006)CrossRef
14.
Zurück zum Zitat Salmanpour, M.S., Sharif Khodaei, Z., Aliabadi, M.H.: Guided wave temperature correction methods in structural health monitoring. J. Intell. Mater. Syst. Struct. 28, 604–618 (2017)CrossRef Salmanpour, M.S., Sharif Khodaei, Z., Aliabadi, M.H.: Guided wave temperature correction methods in structural health monitoring. J. Intell. Mater. Syst. Struct. 28, 604–618 (2017)CrossRef
15.
Zurück zum Zitat Soleimanpour, R., Ng, C.T., Wang, C.H.: Higher harmonic generation of guided waves at delaminations in laminated composite beams. Struct. Health Monit. 16, 400–417 (2017)CrossRef Soleimanpour, R., Ng, C.T., Wang, C.H.: Higher harmonic generation of guided waves at delaminations in laminated composite beams. Struct. Health Monit. 16, 400–417 (2017)CrossRef
16.
Zurück zum Zitat Zuo, P., Zhou, Y., Fan, Z.: Numerical and experimental investigation of nonlinear ultrasonic Lamb waves at low frequency. Appl. Phys. Lett. 109, 021902 (2016)CrossRef Zuo, P., Zhou, Y., Fan, Z.: Numerical and experimental investigation of nonlinear ultrasonic Lamb waves at low frequency. Appl. Phys. Lett. 109, 021902 (2016)CrossRef
17.
Zurück zum Zitat Jhang, K.Y.: Nonlinear ultrasonic techniques for nondestructive assessment of micro damage in material: a review. Intl. J. Precis. Eng. Manuf. 10, 123–135 (2009)CrossRef Jhang, K.Y.: Nonlinear ultrasonic techniques for nondestructive assessment of micro damage in material: a review. Intl. J. Precis. Eng. Manuf. 10, 123–135 (2009)CrossRef
18.
Zurück zum Zitat Matsuda, N., Biwa, S.: Frequency dependence of second-harmonic generation in Lamb waves. J. Nondestr. Eval. 33, 169–177 (2014)CrossRef Matsuda, N., Biwa, S.: Frequency dependence of second-harmonic generation in Lamb waves. J. Nondestr. Eval. 33, 169–177 (2014)CrossRef
19.
Zurück zum Zitat Bermes, C., Kim, J.Y., Qu, J., Jacobs, L.J.: Experimental characterization of material nonlinearity using Lamb waves. Appl. Phys. Lett. 90, 021901 (2007)CrossRef Bermes, C., Kim, J.Y., Qu, J., Jacobs, L.J.: Experimental characterization of material nonlinearity using Lamb waves. Appl. Phys. Lett. 90, 021901 (2007)CrossRef
20.
Zurück zum Zitat Hong, M., Su, Z., Lu, Y., Sohn, H., Qing, X.: Locating fatigue damage using temporal signal features of nonlinear Lamb waves. Mech. Syst. Signal Process. 60, 182–197 (2015)CrossRef Hong, M., Su, Z., Lu, Y., Sohn, H., Qing, X.: Locating fatigue damage using temporal signal features of nonlinear Lamb waves. Mech. Syst. Signal Process. 60, 182–197 (2015)CrossRef
21.
Zurück zum Zitat Zhao, Y., Li, F., Cao, P., Liu, Y., Zhang, J., Fu, S., Zhang, J., Hu, N.: Generation mechanism of nonlinear ultrasonic Lamb waves in thin plates with randomly distributed micro-cracks. Ultrasonics 79, 60–67 (2017)CrossRef Zhao, Y., Li, F., Cao, P., Liu, Y., Zhang, J., Fu, S., Zhang, J., Hu, N.: Generation mechanism of nonlinear ultrasonic Lamb waves in thin plates with randomly distributed micro-cracks. Ultrasonics 79, 60–67 (2017)CrossRef
22.
Zurück zum Zitat Hong, M., Mao, Z., Todd, M.D., Su, Z.: Uncertainty quantification for acoustic nonlinearity parameter in Lamb wave-based prediction of barely visible impact damage in composites. Mech. Syst. Signal Process. 82, 448–460 (2017)CrossRef Hong, M., Mao, Z., Todd, M.D., Su, Z.: Uncertainty quantification for acoustic nonlinearity parameter in Lamb wave-based prediction of barely visible impact damage in composites. Mech. Syst. Signal Process. 82, 448–460 (2017)CrossRef
23.
Zurück zum Zitat Mostavi, A., Kamali, N., Tehrani, N., Chi, S.W., Ozevin, D., Indacochea, J.E.: Wavelet based harmonics decomposition of ultrasonic signal in assessment of plastic strain in aluminum. Measurement 106, 66–78 (2017)CrossRef Mostavi, A., Kamali, N., Tehrani, N., Chi, S.W., Ozevin, D., Indacochea, J.E.: Wavelet based harmonics decomposition of ultrasonic signal in assessment of plastic strain in aluminum. Measurement 106, 66–78 (2017)CrossRef
24.
Zurück zum Zitat Croxford, A.J., Wilcox, P.D., Drinkwater, B.W., Nagy, P.B.: The use of non-collinear mixing for nonlinear ultrasonic detection of plasticity and fatigue. J. Acoust. Soc. Am. 126, 117–122 (2009)CrossRef Croxford, A.J., Wilcox, P.D., Drinkwater, B.W., Nagy, P.B.: The use of non-collinear mixing for nonlinear ultrasonic detection of plasticity and fatigue. J. Acoust. Soc. Am. 126, 117–122 (2009)CrossRef
25.
Zurück zum Zitat Liu, M., Tang, G., Jacobs, L.J., Qu, J.: Measuring acoustic nonlinearity parameter using collinear wave mixing. J. Appl. Phys. 112, 024908 (2012)CrossRef Liu, M., Tang, G., Jacobs, L.J., Qu, J.: Measuring acoustic nonlinearity parameter using collinear wave mixing. J. Appl. Phys. 112, 024908 (2012)CrossRef
26.
Zurück zum Zitat Ju, T., Achenbach, J.D., Jacobs, L.J., Qu, J.: Nondestructive evaluation of thermal aging of adhesive joints by using a nonlinear wave mixing technique. NDT E Int. 103, 62–67 (2019)CrossRef Ju, T., Achenbach, J.D., Jacobs, L.J., Qu, J.: Nondestructive evaluation of thermal aging of adhesive joints by using a nonlinear wave mixing technique. NDT E Int. 103, 62–67 (2019)CrossRef
27.
Zurück zum Zitat Gallot, T., Malcolm, A., Szabo, T.L., Brown, S., Burns, D., Fehler, M.: Characterizing the nonlinear interaction of S-and P-waves in a rock sample. J. Appl. Phys. 117, 034902 (2015)CrossRef Gallot, T., Malcolm, A., Szabo, T.L., Brown, S., Burns, D., Fehler, M.: Characterizing the nonlinear interaction of S-and P-waves in a rock sample. J. Appl. Phys. 117, 034902 (2015)CrossRef
28.
Zurück zum Zitat Lv, H., Zhang, J., Jiao, J., Croxford, A.: Fatigue crack inspection and characterisation using non-collinear shear wave mixing. Smart Mater. Struct. 29, 055024 (2020)CrossRef Lv, H., Zhang, J., Jiao, J., Croxford, A.: Fatigue crack inspection and characterisation using non-collinear shear wave mixing. Smart Mater. Struct. 29, 055024 (2020)CrossRef
29.
Zurück zum Zitat Hasanian, M., Lissenden, C.J.: Second order harmonic guided wave mutual interactions in plate: vector analysis, numerical simulation, and experimental results. J. Appl. Phys. 122, 084901 (2017)CrossRef Hasanian, M., Lissenden, C.J.: Second order harmonic guided wave mutual interactions in plate: vector analysis, numerical simulation, and experimental results. J. Appl. Phys. 122, 084901 (2017)CrossRef
30.
Zurück zum Zitat Metya, A.K., Tarafder, S., Balasubramaniam, K.: Nonlinear Lamb wave mixing for assessing localized deformation during creep. NDT E Int. 98, 89–94 (2018)CrossRef Metya, A.K., Tarafder, S., Balasubramaniam, K.: Nonlinear Lamb wave mixing for assessing localized deformation during creep. NDT E Int. 98, 89–94 (2018)CrossRef
31.
Zurück zum Zitat Li, F., Zhao, Y., Cao, P., Hu, N.: Mixing of ultrasonic Lamb waves in thin plates with quadratic nonlinearity. Ultrasonics 87, 33–43 (2018)CrossRef Li, F., Zhao, Y., Cao, P., Hu, N.: Mixing of ultrasonic Lamb waves in thin plates with quadratic nonlinearity. Ultrasonics 87, 33–43 (2018)CrossRef
32.
Zurück zum Zitat Jingpin, J., Xiangji, M., Cunfu, H., Bin, W.: Nonlinear Lamb wave-mixing technique for micro-crack detection in plates. NDT E Int. 85, 63–71 (2017)CrossRef Jingpin, J., Xiangji, M., Cunfu, H., Bin, W.: Nonlinear Lamb wave-mixing technique for micro-crack detection in plates. NDT E Int. 85, 63–71 (2017)CrossRef
33.
Zurück zum Zitat Aslam, M., Bijudas, C.R., Nagarajan, P., Remanan, M.: Numerical and experimental investigation of nonlinear lamb wave mixing at low frequency. J. Aerosp. Eng. 33, 04020037 (2020)CrossRef Aslam, M., Bijudas, C.R., Nagarajan, P., Remanan, M.: Numerical and experimental investigation of nonlinear lamb wave mixing at low frequency. J. Aerosp. Eng. 33, 04020037 (2020)CrossRef
34.
Zurück zum Zitat Chillara, V.K., Lissenden, C.J.: Nonlinear guided waves in plates: a numerical perspective. Ultrasonics 54, 1553–1558 (2014)CrossRef Chillara, V.K., Lissenden, C.J.: Nonlinear guided waves in plates: a numerical perspective. Ultrasonics 54, 1553–1558 (2014)CrossRef
35.
Zurück zum Zitat Rose, J.L.: Ultrasonic guided waves in solid media. Cambridge University Press, Cambridge (2014)CrossRef Rose, J.L.: Ultrasonic guided waves in solid media. Cambridge University Press, Cambridge (2014)CrossRef
36.
Zurück zum Zitat Solodov, I.Y., Krohn, N., Busse, G.: CAN: an example of non-classical acoustic nonlinearity in solids. Ultrasonics 40, 621–625 (2002)CrossRef Solodov, I.Y., Krohn, N., Busse, G.: CAN: an example of non-classical acoustic nonlinearity in solids. Ultrasonics 40, 621–625 (2002)CrossRef
37.
Zurück zum Zitat Ishii, Y., Biwa, S., Adachi, T.: Non-collinear interaction of guided elastic waves in an isotropic plate. J. Sound Vib. 419, 390–404 (2018)CrossRef Ishii, Y., Biwa, S., Adachi, T.: Non-collinear interaction of guided elastic waves in an isotropic plate. J. Sound Vib. 419, 390–404 (2018)CrossRef
38.
Zurück zum Zitat Li, W., Deng, M., Hu, N., Xiang, Y.: Theoretical analysis and experimental observation of frequency mixing response of ultrasonic Lamb waves. J. Appl. Phys. 124, 044901 (2018)CrossRef Li, W., Deng, M., Hu, N., Xiang, Y.: Theoretical analysis and experimental observation of frequency mixing response of ultrasonic Lamb waves. J. Appl. Phys. 124, 044901 (2018)CrossRef
39.
Zurück zum Zitat Yang, C., Ye, L., Su, Z., Bannister, M.: Some aspects of numerical simulation for Lamb wave propagation in composite laminates. Compos. Struct. 75, 267–275 (2006)CrossRef Yang, C., Ye, L., Su, Z., Bannister, M.: Some aspects of numerical simulation for Lamb wave propagation in composite laminates. Compos. Struct. 75, 267–275 (2006)CrossRef
40.
Zurück zum Zitat Drozdz, M., Moreau, L., Castaings, M., Lowe, M.J.S., Cawley, P.: March. Efficient numerical modelling of absorbing regions for boundaries of guided waves problems. AIP Conf. Proc. 820, 126–133 (2006)CrossRef Drozdz, M., Moreau, L., Castaings, M., Lowe, M.J.S., Cawley, P.: March. Efficient numerical modelling of absorbing regions for boundaries of guided waves problems. AIP Conf. Proc. 820, 126–133 (2006)CrossRef
41.
Zurück zum Zitat Manual, A.U.: Version 6.13-2. Providence, Dassault Systémes Simulia Corp. (2013) Manual, A.U.: Version 6.13-2. Providence, Dassault Systémes Simulia Corp. (2013)
42.
Zurück zum Zitat Guan, L., Zou, M., Wan, X., Li, Y.: Nonlinear Lamb wave micro-crack direction identification in plates with mixed-frequency technique. Appl. Sci. 10, 2135 (2020)CrossRef Guan, L., Zou, M., Wan, X., Li, Y.: Nonlinear Lamb wave micro-crack direction identification in plates with mixed-frequency technique. Appl. Sci. 10, 2135 (2020)CrossRef
Metadaten
Titel
Defect Localization Using Nonlinear Lamb Wave Mixing Technique
verfasst von
Mohammed Aslam
Praveen Nagarajan
Mini Remanan
Publikationsdatum
01.03.2021
Verlag
Springer US
Erschienen in
Journal of Nondestructive Evaluation / Ausgabe 1/2021
Print ISSN: 0195-9298
Elektronische ISSN: 1573-4862
DOI
https://doi.org/10.1007/s10921-020-00747-5

Weitere Artikel der Ausgabe 1/2021

Journal of Nondestructive Evaluation 1/2021 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.