Skip to main content
Erschienen in: Shape Memory and Superelasticity 3/2015

01.09.2015

Deformation Mechanisms in NiTi-Al Composites Fabricated by Ultrasonic Additive Manufacturing

verfasst von: Xiang Chen, Adam Hehr, Marcelo J. Dapino, Peter M. Anderson

Erschienen in: Shape Memory and Superelasticity | Ausgabe 3/2015

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Thermally active NiTi shape memory alloy (SMA) fibers can be used to tune or tailor the effective coefficient of thermal expansion (CTE) of a metallic matrix composite. In this paper, a novel NiTi-Al composite is fabricated using ultrasonic additive manufacturing (UAM). A combined experimental-simulation approach is used to develop and validate a microstructurally based finite element model of the composite. The simulations are able to closely reproduce the macroscopic strain versus temperature cyclic response, including initial transient effects in the first cycle. They also show that the composite CTE is minimized if the austenite texture in the SMA wires is 〈001〉B2, that a fiber aspect ratio >10 maximizes fiber efficiency, and that the UAM process may reduce hysteresis in embedded SMA wires.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Thorat RR, Risanti DD, San Martín D, Garces G, del Castillo PRD, van der Zwaag S (2009) On the transformation behaviour of NiTi particulate reinforced AA2124 composites. J Alloys Compd 477(1):307–315CrossRef Thorat RR, Risanti DD, San Martín D, Garces G, del Castillo PRD, van der Zwaag S (2009) On the transformation behaviour of NiTi particulate reinforced AA2124 composites. J Alloys Compd 477(1):307–315CrossRef
2.
Zurück zum Zitat Ni DR, Wang JJ, Zhou ZN, Ma ZY (2014) Fabrication and mechanical properties of bulk NiTip/Al composites prepared by friction stir processing. J. Alloys Compd 586:368–374CrossRef Ni DR, Wang JJ, Zhou ZN, Ma ZY (2014) Fabrication and mechanical properties of bulk NiTip/Al composites prepared by friction stir processing. J. Alloys Compd 586:368–374CrossRef
3.
Zurück zum Zitat Smith RC (2005). Smart material systems: model development. Society for Industrial and Applied Mathematics (Philadephia, PA) Smith RC (2005). Smart material systems: model development. Society for Industrial and Applied Mathematics (Philadephia, PA)
4.
Zurück zum Zitat Jani J, Leary M, Subic A, Gibson M (2014) A review of shape memory alloy research, applications, and opportunities. Mater Des 56:1078–1113CrossRef Jani J, Leary M, Subic A, Gibson M (2014) A review of shape memory alloy research, applications, and opportunities. Mater Des 56:1078–1113CrossRef
5.
Zurück zum Zitat Jonnalagadda KD, Sottos NR, Qidwai MA, Lagoudas DC (1998) Transformation of embedded shape memory alloy ribbons. J Intell Mater Syst Struct 9:379–390CrossRef Jonnalagadda KD, Sottos NR, Qidwai MA, Lagoudas DC (1998) Transformation of embedded shape memory alloy ribbons. J Intell Mater Syst Struct 9:379–390CrossRef
6.
Zurück zum Zitat Bollas D, Pappas P, Parthenios J, Galiotis C (2007) Stress generation by shape memory alloy wires embedded in polymer composites. Acta Mater 55:5489–5499CrossRef Bollas D, Pappas P, Parthenios J, Galiotis C (2007) Stress generation by shape memory alloy wires embedded in polymer composites. Acta Mater 55:5489–5499CrossRef
7.
Zurück zum Zitat Furuya Y, Sasaki A, Taya M (1993) Enhanced mechanical properties of TiNi shape memory fiber/Al matrix composite. Mater Trans JIM 34(3):224–227CrossRef Furuya Y, Sasaki A, Taya M (1993) Enhanced mechanical properties of TiNi shape memory fiber/Al matrix composite. Mater Trans JIM 34(3):224–227CrossRef
8.
Zurück zum Zitat Armstrong WD, Kino H (1995) Martensitic transformations in a NiTi fiber reinforced 6061 aluminum matrix composite. J Intell Mater Syst Struct 6(6):809CrossRef Armstrong WD, Kino H (1995) Martensitic transformations in a NiTi fiber reinforced 6061 aluminum matrix composite. J Intell Mater Syst Struct 6(6):809CrossRef
9.
Zurück zum Zitat Mizuuchi K (2000) The fabrication and thermomechanical behavior of Al and Ti SMA composites. J Met 52(10):26–31 Mizuuchi K (2000) The fabrication and thermomechanical behavior of Al and Ti SMA composites. J Met 52(10):26–31
10.
Zurück zum Zitat Kong CY, Soar RC, Dickens PM (2004) Ultrasonic consolidation for embedding SMA fibres within aluminium matrices. Compos Struct 66:421–427CrossRef Kong CY, Soar RC, Dickens PM (2004) Ultrasonic consolidation for embedding SMA fibres within aluminium matrices. Compos Struct 66:421–427CrossRef
11.
Zurück zum Zitat Hahnlen R, Dapino M (2012) Stress-induced tuning of ultrasonic additive manufacturing Al-NiTi composites. SPIE Smart Structures/NDE, San DiegoCrossRef Hahnlen R, Dapino M (2012) Stress-induced tuning of ultrasonic additive manufacturing Al-NiTi composites. SPIE Smart Structures/NDE, San DiegoCrossRef
12.
Zurück zum Zitat Hahnlen R, Dapino MJ (2014) NiTi-Al interface strength in ultrasonic additive manufacturing composites. Composites Part B 59:101–108CrossRef Hahnlen R, Dapino MJ (2014) NiTi-Al interface strength in ultrasonic additive manufacturing composites. Composites Part B 59:101–108CrossRef
13.
Zurück zum Zitat Graff K (2011) Ultrasonic additive manufacturing. ASM handbooks: welding fund and processes. ASM International, Materials Park Graff K (2011) Ultrasonic additive manufacturing. ASM handbooks: welding fund and processes. ASM International, Materials Park
14.
Zurück zum Zitat Sriraman M, Gonser M, Fujii H, Babu S, Bloss M (2011) Thermal transients during processing of materials by very high power ultrasonic additive manufacturing. J Mater Process Technol 211:1650–1657CrossRef Sriraman M, Gonser M, Fujii H, Babu S, Bloss M (2011) Thermal transients during processing of materials by very high power ultrasonic additive manufacturing. J Mater Process Technol 211:1650–1657CrossRef
15.
Zurück zum Zitat Dehoff RR, Babu SS (2010) Characterization of interfacial microstructures in 3003 aluminum alloy blocks fabricated by ultrasonic additive manufacturing. Acta Mater 58(13):4305–4315CrossRef Dehoff RR, Babu SS (2010) Characterization of interfacial microstructures in 3003 aluminum alloy blocks fabricated by ultrasonic additive manufacturing. Acta Mater 58(13):4305–4315CrossRef
16.
Zurück zum Zitat Friel RJ, Harris RA (2010) A nanometre-scale fibre-to-matrix interface characterization of an ultrasonically consolidated metal matrix composite. Proc Inst Mech Eng Part L 224(1):31–40 Friel RJ, Harris RA (2010) A nanometre-scale fibre-to-matrix interface characterization of an ultrasonically consolidated metal matrix composite. Proc Inst Mech Eng Part L 224(1):31–40
17.
Zurück zum Zitat Hahnlen RM (2012) Characterization and modeling of active metal-matrix composites with embedded shape memory alloys (PhD Dissertation). The Ohio State University Hahnlen RM (2012) Characterization and modeling of active metal-matrix composites with embedded shape memory alloys (PhD Dissertation). The Ohio State University
18.
Zurück zum Zitat Li JF, Zheng ZQ, Li XW, Peng ZW (2009) Application of shape memory alloy TiNi in low thermal expansion copper composites. Mater Des 30(2):314–318CrossRef Li JF, Zheng ZQ, Li XW, Peng ZW (2009) Application of shape memory alloy TiNi in low thermal expansion copper composites. Mater Des 30(2):314–318CrossRef
19.
Zurück zum Zitat Hu J, Zhang Q, Liu Y, Wu G (2014) Phase transformation behaviors of TiNi fibers embedded in an aluminum matrix. J Alloys Compd 589:491–497CrossRef Hu J, Zhang Q, Liu Y, Wu G (2014) Phase transformation behaviors of TiNi fibers embedded in an aluminum matrix. J Alloys Compd 589:491–497CrossRef
20.
Zurück zum Zitat Auricchio F, Petrini L (2004) A three-dimensional model describing stress–temperature induced solid phase transformations: thermomechanical coupling and hybrid composite applications. Int J Num Methods Eng 61(5):716–737CrossRef Auricchio F, Petrini L (2004) A three-dimensional model describing stress–temperature induced solid phase transformations: thermomechanical coupling and hybrid composite applications. Int J Num Methods Eng 61(5):716–737CrossRef
21.
Zurück zum Zitat Freed Y, Aboudi J (2009) Thermomechanically coupled micromechanical analysis of shape memory alloy composites undergoing transformation induced plasticity. J Intell Mater Syst Struct 20(1):23–28CrossRef Freed Y, Aboudi J (2009) Thermomechanically coupled micromechanical analysis of shape memory alloy composites undergoing transformation induced plasticity. J Intell Mater Syst Struct 20(1):23–28CrossRef
22.
Zurück zum Zitat Zhu Y, Dui G (2009) Effect of fiber shape on mechanical behavior of composite with elastoplastic matrix and SMA reinforcement. J Mech Behav Biomed Mater 2(5):454–459CrossRef Zhu Y, Dui G (2009) Effect of fiber shape on mechanical behavior of composite with elastoplastic matrix and SMA reinforcement. J Mech Behav Biomed Mater 2(5):454–459CrossRef
23.
Zurück zum Zitat Chatzigeorgiou G, Chemisky Y, Meraghni F (2015) Computational micro to macro transitions for shape memory alloy composites using periodic homogenization. Smart Mater Struct 24(3):035009CrossRef Chatzigeorgiou G, Chemisky Y, Meraghni F (2015) Computational micro to macro transitions for shape memory alloy composites using periodic homogenization. Smart Mater Struct 24(3):035009CrossRef
24.
Zurück zum Zitat Damanpack AR, Aghdam MM, Shakeri M (2015) Micro-mechanics of composite with SMA fibers embedded in metallic/polymeric matrix under off-axial loadings. Eur J Mech A 49:467–480CrossRef Damanpack AR, Aghdam MM, Shakeri M (2015) Micro-mechanics of composite with SMA fibers embedded in metallic/polymeric matrix under off-axial loadings. Eur J Mech A 49:467–480CrossRef
25.
Zurück zum Zitat Chen X, Nguyen TD (2011) Influence of thermoviscoelastic properties and loading conditions on the recovery performance of shape memory polymers. Mech Mater 43:127–138CrossRef Chen X, Nguyen TD (2011) Influence of thermoviscoelastic properties and loading conditions on the recovery performance of shape memory polymers. Mech Mater 43:127–138CrossRef
26.
Zurück zum Zitat Hehr A, Chen X, Pritchard J, Dapino MJ, Anderson PM (2015) Al-NiTi metal matrix composites for zero CTE materials: fabrication, design, and modeling. In: Sano T, Srivatsan TS (eds) Advanced composites for aerospace, marine, and land applications II. Wiley, Hoboken Hehr A, Chen X, Pritchard J, Dapino MJ, Anderson PM (2015) Al-NiTi metal matrix composites for zero CTE materials: fabrication, design, and modeling. In: Sano T, Srivatsan TS (eds) Advanced composites for aerospace, marine, and land applications II. Wiley, Hoboken
27.
Zurück zum Zitat Kumar P, Lagoudas D (2008) Introduction to shape memory alloys. In: Lagoudas DC (ed) Shape memory alloys: modeling and engineering applications. Springer, New York, pp 1–50CrossRef Kumar P, Lagoudas D (2008) Introduction to shape memory alloys. In: Lagoudas DC (ed) Shape memory alloys: modeling and engineering applications. Springer, New York, pp 1–50CrossRef
28.
Zurück zum Zitat ASTM Standard F2516-14 (2014) Standard test method for tension testing of nickel-titanium superelastic materials. ASTM International, West Conshohocken ASTM Standard F2516-14 (2014) Standard test method for tension testing of nickel-titanium superelastic materials. ASTM International, West Conshohocken
29.
Zurück zum Zitat ASTM Standard F2004-05 (2010) Standard test method for transformation temperature of nickel-titanium alloys by thermal analysis. ASTM International, West Conshohocken ASTM Standard F2004-05 (2010) Standard test method for transformation temperature of nickel-titanium alloys by thermal analysis. ASTM International, West Conshohocken
30.
Zurück zum Zitat Wolcott P, Hehr A, Dapino MJ (2014) Optimized welding parameters of Al 6061 ultrasonic additive manufactured structures. J Mater Res 29:2055–2206CrossRef Wolcott P, Hehr A, Dapino MJ (2014) Optimized welding parameters of Al 6061 ultrasonic additive manufactured structures. J Mater Res 29:2055–2206CrossRef
32.
Zurück zum Zitat Voort GF (2004) ASM handbook: metallography and microstructures, vol 9. ASM International, Materials Park Voort GF (2004) ASM handbook: metallography and microstructures, vol 9. ASM International, Materials Park
33.
Zurück zum Zitat Hehr A, Dapino M (2015) Interfacial shear strength estimates of NiTi-Al matrix composites fabricated via ultrasonic additive manufacturing. Composites Part B 77:199–208CrossRef Hehr A, Dapino M (2015) Interfacial shear strength estimates of NiTi-Al matrix composites fabricated via ultrasonic additive manufacturing. Composites Part B 77:199–208CrossRef
34.
Zurück zum Zitat Foster DR, Dapino MJ, Babu SS (2013) Elastic constants of ultrasonic additive manufactured Al 3003-H18. Ultrasonics 53(1):211–218CrossRef Foster DR, Dapino MJ, Babu SS (2013) Elastic constants of ultrasonic additive manufactured Al 3003-H18. Ultrasonics 53(1):211–218CrossRef
35.
Zurück zum Zitat ASTM E8/E8M-15a (2015) Standard test methods for tension testing of metallic materials. ASTM International, West Conshohocken ASTM E8/E8M-15a (2015) Standard test methods for tension testing of metallic materials. ASTM International, West Conshohocken
36.
Zurück zum Zitat ASTM Standard E21-09 (2009) Standard test methods for elevated temperature tension tests of metallic materials. ASTM International, West Conshohocken ASTM Standard E21-09 (2009) Standard test methods for elevated temperature tension tests of metallic materials. ASTM International, West Conshohocken
37.
Zurück zum Zitat Manchiraju S, Anderson PM (2010) Coupling between martensitic phase transformations and plasticity: a microstructure-based finite element model. Int J Plast 26:1508–1526CrossRef Manchiraju S, Anderson PM (2010) Coupling between martensitic phase transformations and plasticity: a microstructure-based finite element model. Int J Plast 26:1508–1526CrossRef
39.
Zurück zum Zitat Chen X (2015) From nano-precipitates to macroscale composites: How inclusion-matrix interactions influence the behaviors of shape memory alloys and structures. Ph.D. Dissertation, The Ohio State University Chen X (2015) From nano-precipitates to macroscale composites: How inclusion-matrix interactions influence the behaviors of shape memory alloys and structures. Ph.D. Dissertation, The Ohio State University
40.
Zurück zum Zitat Otsuka K, Ren X (2005) Physical metallurgy of Ti–Ni-based shape memory alloys. Prog Mater Sci 50:511–678CrossRef Otsuka K, Ren X (2005) Physical metallurgy of Ti–Ni-based shape memory alloys. Prog Mater Sci 50:511–678CrossRef
41.
Zurück zum Zitat Thamburaja P, Anand L (2001) Polycrystalline shape-memory materials: effect of crystallographic texture. J Mech Phys Solids 49:709–737CrossRef Thamburaja P, Anand L (2001) Polycrystalline shape-memory materials: effect of crystallographic texture. J Mech Phys Solids 49:709–737CrossRef
42.
Zurück zum Zitat Paranjape H, Anderson PM (2014) Texture and grain neighborhood effects on Ni-Ti shape memory alloy performance. Modell Simul Mater Sci Eng 22:075002CrossRef Paranjape H, Anderson PM (2014) Texture and grain neighborhood effects on Ni-Ti shape memory alloy performance. Modell Simul Mater Sci Eng 22:075002CrossRef
43.
Zurück zum Zitat Kim K, Daly S (2013) The effect of texture on stress-induced martensite formation in nickel-titanium. Smart Mater Struct 22:075012CrossRef Kim K, Daly S (2013) The effect of texture on stress-induced martensite formation in nickel-titanium. Smart Mater Struct 22:075012CrossRef
44.
Zurück zum Zitat Liu Y, Favier D, Orgeas L (2006) Hysteretic behavior of ferroelasticity of NiTi in shear. J Intell Mater Syst Struct 17:1121–1126CrossRef Liu Y, Favier D, Orgeas L (2006) Hysteretic behavior of ferroelasticity of NiTi in shear. J Intell Mater Syst Struct 17:1121–1126CrossRef
45.
Zurück zum Zitat Van Humbeeck J (2003) Damping capacity of thermoelastic martensite in shape memory alloys. J Alloys Compd 355:58–64CrossRef Van Humbeeck J (2003) Damping capacity of thermoelastic martensite in shape memory alloys. J Alloys Compd 355:58–64CrossRef
46.
Zurück zum Zitat Blanter MS, Golovin IS, Neuhäuser H, Sinning H-R (2007) Internal friction at phase transformations. In: Hull R, Osgood RM, Parisi J, Warlimont H (eds) Internal friction in metallic materials: a handbook. Springer, Berlin, pp 121–128 Blanter MS, Golovin IS, Neuhäuser H, Sinning H-R (2007) Internal friction at phase transformations. In: Hull R, Osgood RM, Parisi J, Warlimont H (eds) Internal friction in metallic materials: a handbook. Springer, Berlin, pp 121–128
47.
Zurück zum Zitat Gurson A (1977) Continuum theory of ductile rupture by void nucleation and growth: Part I—Yield criteria and flow rules for porous ductile media. J Eng Mater Technol 99:2–15CrossRef Gurson A (1977) Continuum theory of ductile rupture by void nucleation and growth: Part I—Yield criteria and flow rules for porous ductile media. J Eng Mater Technol 99:2–15CrossRef
48.
Zurück zum Zitat Tvergaard V (1981) Influence of voids on shear band instabilities under plane strain conditions. Int J Fract 17:389–407CrossRef Tvergaard V (1981) Influence of voids on shear band instabilities under plane strain conditions. Int J Fract 17:389–407CrossRef
49.
Zurück zum Zitat Robertson SW, Gong XY, Ritchie RO (2006) Effect of product form and heat treatment on the crystallographic texture of austenitic nitinol. J Mater Sci 41(3):621–630CrossRef Robertson SW, Gong XY, Ritchie RO (2006) Effect of product form and heat treatment on the crystallographic texture of austenitic nitinol. J Mater Sci 41(3):621–630CrossRef
50.
Zurück zum Zitat Ball JM, James RD (1987) Fine phase mixtures as minimizers of energy. Arch Rat Mech Anal 100:13–52CrossRef Ball JM, James RD (1987) Fine phase mixtures as minimizers of energy. Arch Rat Mech Anal 100:13–52CrossRef
51.
Zurück zum Zitat Chawla KK (2012) Micromechanics of composites. Composite materials: science and engineering. Springer, New York, pp 337–385CrossRef Chawla KK (2012) Micromechanics of composites. Composite materials: science and engineering. Springer, New York, pp 337–385CrossRef
52.
Zurück zum Zitat Eggeler G, Hornbogen E, Yawny A, Heckmann A, Wagner M (2004) Structural and functional fatigue of NiTi shape memory alloys. Mater Sci Eng, A 378:24–33CrossRef Eggeler G, Hornbogen E, Yawny A, Heckmann A, Wagner M (2004) Structural and functional fatigue of NiTi shape memory alloys. Mater Sci Eng, A 378:24–33CrossRef
53.
Zurück zum Zitat Stebner AP, Vogel SC, Noebe RD, Sisneros TA, Clausen B, Brown DW, Garg A, Brinson LC (2013) Micromechanical quantification of elastic, twinning, and slip strain partitioning exhibited by polycrystalline, monoclinic nickel-titanium during large uniaxial deformations measured via in-situ neutron diffraction. J Mech Phys Solids 61:2302–2330CrossRef Stebner AP, Vogel SC, Noebe RD, Sisneros TA, Clausen B, Brown DW, Garg A, Brinson LC (2013) Micromechanical quantification of elastic, twinning, and slip strain partitioning exhibited by polycrystalline, monoclinic nickel-titanium during large uniaxial deformations measured via in-situ neutron diffraction. J Mech Phys Solids 61:2302–2330CrossRef
54.
Zurück zum Zitat Liu Y, Xie Z, Van Humbeeck J (1999) Cyclic deformation of NiTi shape memory alloys. Mater Sci Eng A 273–275:673–678CrossRef Liu Y, Xie Z, Van Humbeeck J (1999) Cyclic deformation of NiTi shape memory alloys. Mater Sci Eng A 273–275:673–678CrossRef
55.
Zurück zum Zitat Kockar B, Karaman I, Kim JI, Chumlyakov YI, Sharp J, Yu C-J (2008) Thermomechanical cyclic response of an ultrafine-grained NiTi shape memory alloy. Acta Mater 56:3630–3646CrossRef Kockar B, Karaman I, Kim JI, Chumlyakov YI, Sharp J, Yu C-J (2008) Thermomechanical cyclic response of an ultrafine-grained NiTi shape memory alloy. Acta Mater 56:3630–3646CrossRef
56.
Zurück zum Zitat Ye J, Mishra RK, Pelton AR, Minor AM (2010) Direct observation of the NiTi martensitic phase transformation in nanoscale volumes. Acta Mater 58:490–498CrossRef Ye J, Mishra RK, Pelton AR, Minor AM (2010) Direct observation of the NiTi martensitic phase transformation in nanoscale volumes. Acta Mater 58:490–498CrossRef
57.
Zurück zum Zitat Pfetzing-Micklich J, Ghisleni R, Simon T, Somsen C, Michler J, Eggeler G (2012) Orientation dependence of stress-induced phase transformation and dislocation plasticity in NiTi shape memory alloys on the micro scale. Mater Sci Eng A 538:265–271CrossRef Pfetzing-Micklich J, Ghisleni R, Simon T, Somsen C, Michler J, Eggeler G (2012) Orientation dependence of stress-induced phase transformation and dislocation plasticity in NiTi shape memory alloys on the micro scale. Mater Sci Eng A 538:265–271CrossRef
58.
Zurück zum Zitat Benafan O, Noebe RD, Padula SA II, Garg A, Clausen B, Vogel S, Vaidyanathan R (2013) Temperature dependent deformation of the B2 austenite phase of a NiTi shape memory alloy. Int J Plast 51:103–121CrossRef Benafan O, Noebe RD, Padula SA II, Garg A, Clausen B, Vogel S, Vaidyanathan R (2013) Temperature dependent deformation of the B2 austenite phase of a NiTi shape memory alloy. Int J Plast 51:103–121CrossRef
59.
Zurück zum Zitat Zhang HY, Anderson PM, Daehn GS (1994) Analysis of thermally-induced stress and strain in continuous fiber-reinforced composites. Metall Mater Trans A 25:415–425CrossRef Zhang HY, Anderson PM, Daehn GS (1994) Analysis of thermally-induced stress and strain in continuous fiber-reinforced composites. Metall Mater Trans A 25:415–425CrossRef
60.
Zurück zum Zitat Bowers ML, Chen X, De Graef M, Anderson PM, Mills MJ (2014) Characterization and modeling of defects generated in pseudoelastically deformed NiTi microcrystals. Scr Mater 78:69–72CrossRef Bowers ML, Chen X, De Graef M, Anderson PM, Mills MJ (2014) Characterization and modeling of defects generated in pseudoelastically deformed NiTi microcrystals. Scr Mater 78:69–72CrossRef
61.
Zurück zum Zitat Norfleet DM, Sarosi PM, Manchiraju S, Wagner MF-X, Uchic MD, Anderson PM, Mills MJ (2009) Transformation-induced plasticity during pseudoelastic deformation in Ni-Ti microcrystals. Acta Mater 57:3549–3561CrossRef Norfleet DM, Sarosi PM, Manchiraju S, Wagner MF-X, Uchic MD, Anderson PM, Mills MJ (2009) Transformation-induced plasticity during pseudoelastic deformation in Ni-Ti microcrystals. Acta Mater 57:3549–3561CrossRef
Metadaten
Titel
Deformation Mechanisms in NiTi-Al Composites Fabricated by Ultrasonic Additive Manufacturing
verfasst von
Xiang Chen
Adam Hehr
Marcelo J. Dapino
Peter M. Anderson
Publikationsdatum
01.09.2015
Verlag
Springer International Publishing
Erschienen in
Shape Memory and Superelasticity / Ausgabe 3/2015
Print ISSN: 2199-384X
Elektronische ISSN: 2199-3858
DOI
https://doi.org/10.1007/s40830-015-0032-1

Weitere Artikel der Ausgabe 3/2015

Shape Memory and Superelasticity 3/2015 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.