Skip to main content

2024 | OriginalPaper | Buchkapitel

Demystifying Applications of Explainable Artificial Intelligence (XAI) in e-Commerce

verfasst von : S. Faizal Mukthar Hussain, R. Karthikeyan, M. A. Jabbar

Erschienen in: Role of Explainable Artificial Intelligence in E-Commerce

Verlag: Springer Nature Switzerland

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The past ten years have witnessed significant advancements in artificial intelligence (AI), which has led to the widespread implementation of algorithms for the purpose of solving a wide range of issues. Nevertheless, in order to achieve this level of success, model complexity has been increased while at the same time black-box AI models, which lack clearness, have been utilized. With respect to the above mentioned demand, a concept known as XAI is presented with the goal of making AI more understandable and, as a result, accelerating the adoption of AI in important areas. Several relative ideas of XAI prime part in the published article, these difficulties and research ideas over Explainable AI are dispersed despite the fact that they have been identified. This chapter will provide an introduction to XAI, which will describe Why Explainable AI is needed, the various types of perspective groups, the three unique parts that make up XAI, and issues in XAI.

Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
4.
Zurück zum Zitat Gunning, D. (2016). Broad agency announcement explainable artificial intelligence (XAI). Technical Report. Gunning, D. (2016). Broad agency announcement explainable artificial intelligence (XAI). Technical Report.
5.
6.
Zurück zum Zitat Gade, K., Geyik, S. C., Kenthapadi, K., Mithal, V., & Taly, A. (2020). Gade, K., Geyik, S. C., Kenthapadi, K., Mithal, V., & Taly, A. (2020).
7.
Zurück zum Zitat Explainable AI in industry: practical challenges and lessons learned: implications tutorial. InProceedings of the 2020 Conference on Fairness, Accountability, and Transparency (FAT* ‘20). Explainable AI in industry: practical challenges and lessons learned: implications tutorial. InProceedings of the 2020 Conference on Fairness, Accountability, and Transparency (FAT* ‘20).
13.
Zurück zum Zitat Orekondy, T., Schiele, B., & Fritz, M. (2019). Knockoff nets: Stealing functionality of black-box models. In Conference on Computer Vision and Pattern Recognition. Orekondy, T., Schiele, B., & Fritz, M. (2019). Knockoff nets: Stealing functionality of black-box models. In Conference on Computer Vision and Pattern Recognition.
14.
Zurück zum Zitat Huang, L., Joseph, A. D., Nelson, B., Rubinstein, B. I., & Tygar, J. D. (2011). Adversarial machine learning. In Proceedings of the 4th ACM Workshop on Security and Artificial Intelligence, AISec ’11, Association for Computing Machinery (pp. 43–58). https://doi.org/10.1145/2046684.2046692. Huang, L., Joseph, A. D., Nelson, B., Rubinstein, B. I., & Tygar, J. D. (2011). Adversarial machine learning. In Proceedings of the 4th ACM Workshop on Security and Artificial Intelligence, AISec ’11, Association for Computing Machinery (pp. 43–58). https://​doi.​org/​10.​1145/​2046684.​2046692.
18.
Zurück zum Zitat Panigutti, C., Perotti, A., & Pedreschi, D. (2020). Doctor XAI: An ontology-based approach to black-box sequential data classification explanations. In Proceedings of the 2020 Conference on Fairness, Accountability, and Transparency, in: FAT* ’20, Association for Computing Machinery (pp. 629–639). https://doi.org/10.1145/3351095.3372855. Panigutti, C., Perotti, A., & Pedreschi, D. (2020). Doctor XAI: An ontology-based approach to black-box sequential data classification explanations. In Proceedings of the 2020 Conference on Fairness, Accountability, and Transparency, in: FAT* ’20, Association for Computing Machinery (pp. 629–639). https://​doi.​org/​10.​1145/​3351095.​3372855.
20.
Zurück zum Zitat Tudorache, T. (2020). Ontology engineering: Current state, challenges, and futuredirections. Semant. Web, 11(1), 125–138.CrossRef Tudorache, T. (2020). Ontology engineering: Current state, challenges, and futuredirections. Semant. Web, 11(1), 125–138.CrossRef
Metadaten
Titel
Demystifying Applications of Explainable Artificial Intelligence (XAI) in e-Commerce
verfasst von
S. Faizal Mukthar Hussain
R. Karthikeyan
M. A. Jabbar
Copyright-Jahr
2024
DOI
https://doi.org/10.1007/978-3-031-55615-9_7

Premium Partner