Skip to main content
Erschienen in:
Buchtitelbild

2017 | OriginalPaper | Buchkapitel

Design and Fabrication of Nanomaterial-Based Device for Pressure Sensorial Applications

verfasst von : Rohit Srivastava, Jayeeta Chattopadhyay

Erschienen in: Advanced Nanomaterials in Biomedical, Sensor and Energy Applications

Verlag: Springer Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In the last few decades, pressure sensing devices with actual electronic applications become extremely popular with considering sensitive response potential of a sensor material. However, wearable pressure sensing technologies with flexible and stretchable features are continuously facing various challenges; researchers should consider this field more seriously. The nanomaterials with multifunctional great features in pressure sensing applications are now being considered tremendously. In this chapter, we have approached the basic principle behind a pressure sensor material from chemical aspect. Secondly, various features of different nanomaterials, viz. metal nanowires, carbon nanotubes, quantum dots, etc., have been taken into consideration with their potential applicability as a pressure sensing device. This chapter can create a brief focus to a nanomaterial science researcher towards the suitability of their materials as pressure sensor.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat S. Iijima, Helical microtubules of graphitic carbon. Nature 354, 56–58 (1991)CrossRef S. Iijima, Helical microtubules of graphitic carbon. Nature 354, 56–58 (1991)CrossRef
3.
Zurück zum Zitat J.P. Salvetat, G.A.D. Briggs, J.M. Bonard, R.R. Bacsa, A.J. Kulik, Phys. Rev. Lett. 82, 944–947 (1999)CrossRef J.P. Salvetat, G.A.D. Briggs, J.M. Bonard, R.R. Bacsa, A.J. Kulik, Phys. Rev. Lett. 82, 944–947 (1999)CrossRef
4.
Zurück zum Zitat X. Li, R. Zhang, W. Yu, K. Wang, J. Wei, D. Wu, A. Cao, Z. Li, Y. Cheng, Q. Zheng, et al., Stretchable and highly sensitive graphene-on-polymer strain sensors. Sci. Rep., 1–6 (2012) X. Li, R. Zhang, W. Yu, K. Wang, J. Wei, D. Wu, A. Cao, Z. Li, Y. Cheng, Q. Zheng, et al., Stretchable and highly sensitive graphene-on-polymer strain sensors. Sci. Rep., 1–6 (2012)
5.
Zurück zum Zitat M. Hempel, D. Nezich, J. Kong, M. Hofmann, A novel class of strain gauges based on layered Percolative films of 2D materials. Nano Lett. 12, 5714–5571 (2012)CrossRef M. Hempel, D. Nezich, J. Kong, M. Hofmann, A novel class of strain gauges based on layered Percolative films of 2D materials. Nano Lett. 12, 5714–5571 (2012)CrossRef
6.
Zurück zum Zitat T. Yamada, Y. Hayamizu, Y. Yamamoto, Y. Yomogida, A. Izadi-Najafabadi, D.N. Futaba, K. Hata, A stretchable carbon nanotube strain sensor for human-motion detection. Nat. Nanotechnol. 6, 296–301 (2011)CrossRef T. Yamada, Y. Hayamizu, Y. Yamamoto, Y. Yomogida, A. Izadi-Najafabadi, D.N. Futaba, K. Hata, A stretchable carbon nanotube strain sensor for human-motion detection. Nat. Nanotechnol. 6, 296–301 (2011)CrossRef
7.
Zurück zum Zitat D. Lee, H.P. Hong, M.J. Lee, C.W. Park, A prototype high sensitivity load cell using single walled carbon nanotube strain gauges. Sens. Actuators A 180, 120–126 (2012)CrossRef D. Lee, H.P. Hong, M.J. Lee, C.W. Park, A prototype high sensitivity load cell using single walled carbon nanotube strain gauges. Sens. Actuators A 180, 120–126 (2012)CrossRef
8.
Zurück zum Zitat C.X. Liu, J.W. Choi, P.D.M.S. An Embedded, Nanocomposite strain sensor toward biomedical application. 31st. Ann. Int. Conf. IEEE EMBS, 6391–6394 (2009) C.X. Liu, J.W. Choi, P.D.M.S. An Embedded, Nanocomposite strain sensor toward biomedical application. 31st. Ann. Int. Conf. IEEE EMBS, 6391–6394 (2009)
9.
Zurück zum Zitat T. Giorgino, P. Tormene, F. Lorussi, D.D. Rossi, S. Quaglini, Sensor evaluation for wearable strain gauges in neurological rehabilitation. IEEE Trans. Neural Syst. Rehabil. Eng., 409–415 (2009) T. Giorgino, P. Tormene, F. Lorussi, D.D. Rossi, S. Quaglini, Sensor evaluation for wearable strain gauges in neurological rehabilitation. IEEE Trans. Neural Syst. Rehabil. Eng., 409–415 (2009)
10.
Zurück zum Zitat F. Lourussi, E.M. Scilingo, M. Tesconi, A. Tognetti, D.D. Rossi, Strain sensing fabric for hand posture and gesture monitoring. IEEE Trans. Inf. Technol. Biomed., 372–381 (2005) F. Lourussi, E.M. Scilingo, M. Tesconi, A. Tognetti, D.D. Rossi, Strain sensing fabric for hand posture and gesture monitoring. IEEE Trans. Inf. Technol. Biomed., 372–381 (2005)
11.
Zurück zum Zitat I. Kang, M.J. Schulz, J.H. Kim, V. Shanov, D. Shi, A carbon nanotube strain sensor for structural health monitoring. Smart Mater. Struct. 15, 737–748 (2006)CrossRef I. Kang, M.J. Schulz, J.H. Kim, V. Shanov, D. Shi, A carbon nanotube strain sensor for structural health monitoring. Smart Mater. Struct. 15, 737–748 (2006)CrossRef
12.
Zurück zum Zitat J. Zhang, J. Liu, R. Zhuang, E. Mäder, G. Heinrich, S. Gao, Single MWNT-glass fiber as strain sensor and switch. Adv. Mater. 23, 3392–3397 (2011)CrossRef J. Zhang, J. Liu, R. Zhuang, E. Mäder, G. Heinrich, S. Gao, Single MWNT-glass fiber as strain sensor and switch. Adv. Mater. 23, 3392–3397 (2011)CrossRef
13.
Zurück zum Zitat C.X. Liu, J.W. Choi, Patterning conductive PDMS Nanocomposite in an elastomer using microcontact printing. J. Micromech. Microeng. 19, 085019 (2009)CrossRef C.X. Liu, J.W. Choi, Patterning conductive PDMS Nanocomposite in an elastomer using microcontact printing. J. Micromech. Microeng. 19, 085019 (2009)CrossRef
14.
Zurück zum Zitat N. Lu, C. Lu, S. Yang, J. Rogers, Highly sensitive skin-mountable strain gauges based entirely on elastomers. Adv. Funct. Mater. 22, 4044–4050 (2012)CrossRef N. Lu, C. Lu, S. Yang, J. Rogers, Highly sensitive skin-mountable strain gauges based entirely on elastomers. Adv. Funct. Mater. 22, 4044–4050 (2012)CrossRef
15.
Zurück zum Zitat X. Xiao, L. Yuan, J. Zhong, T. Ding, Y. Liu, T. Cai, Y. Rong, H. Han, J. Zhou, Z.L. Wang, High-strain sensors based on ZnO nanowire/polystyrene hybridized flexible films. Adv. Mater. 23, 5440–5444 (2011)CrossRef X. Xiao, L. Yuan, J. Zhong, T. Ding, Y. Liu, T. Cai, Y. Rong, H. Han, J. Zhou, Z.L. Wang, High-strain sensors based on ZnO nanowire/polystyrene hybridized flexible films. Adv. Mater. 23, 5440–5444 (2011)CrossRef
16.
Zurück zum Zitat X. Yang, Z.Y. Zhou, F.Z. Zheng, M. Zhang, J. Zhang, Y.G. Yao, A high sensitivity single-walled carbon-nanotube- array based strain sensor for weighing transducers. International conference on solid-state sensors, actuators and microsystems, Denver, June 21–25, 2009 X. Yang, Z.Y. Zhou, F.Z. Zheng, M. Zhang, J. Zhang, Y.G. Yao, A high sensitivity single-walled carbon-nanotube- array based strain sensor for weighing transducers. International conference on solid-state sensors, actuators and microsystems, Denver, June 21–25, 2009
17.
Zurück zum Zitat G. Schwartz, B.C. Tee, J. Mei, A.L. Appleton, H. Kim do, H. Wang, Z. Bao, Nat. Commun. 4, 1859 (2013)CrossRef G. Schwartz, B.C. Tee, J. Mei, A.L. Appleton, H. Kim do, H. Wang, Z. Bao, Nat. Commun. 4, 1859 (2013)CrossRef
18.
Zurück zum Zitat T. Sekitani, U. Zschieschang, H. Klauk, T. Someya, Nat. Mater. 9, 1015 (2010)CrossRef T. Sekitani, U. Zschieschang, H. Klauk, T. Someya, Nat. Mater. 9, 1015 (2010)CrossRef
19.
Zurück zum Zitat S. Gong, W. Schwalb, Y. Wang, Y. Chen, Y. Tang, J. Si, B. Shirinzadeh, W. Cheng, Nat. Commun. 5, 3132 (2014) S. Gong, W. Schwalb, Y. Wang, Y. Chen, Y. Tang, J. Si, B. Shirinzadeh, W. Cheng, Nat. Commun. 5, 3132 (2014)
20.
Zurück zum Zitat X. Wang, Y. Gu, Z. Xiong, Z. Cui, T. Zhang, A wearable and highly sensitive pressure sensor with ultrathin gold nanowires. Adv. Mater. 26, 1336 (2014)CrossRef X. Wang, Y. Gu, Z. Xiong, Z. Cui, T. Zhang, A wearable and highly sensitive pressure sensor with ultrathin gold nanowires. Adv. Mater. 26, 1336 (2014)CrossRef
21.
Zurück zum Zitat G.A. Salvatore, N. Munzenrieder, T. Kinkeldei, L. Petti, C. Zysset, I. Strebel, L. Buthe, G. Troster, Nat. Commun. 5, 2982 (2014)CrossRef G.A. Salvatore, N. Munzenrieder, T. Kinkeldei, L. Petti, C. Zysset, I. Strebel, L. Buthe, G. Troster, Nat. Commun. 5, 2982 (2014)CrossRef
22.
Zurück zum Zitat C. Li, P.-M. Wu, L.A. Shutter, R.K. Narayan, Appl. Phys. Lett. 96, 053502 (2010)CrossRef C. Li, P.-M. Wu, L.A. Shutter, R.K. Narayan, Appl. Phys. Lett. 96, 053502 (2010)CrossRef
23.
Zurück zum Zitat M.C. Yu, M.S. Yu, M.K. Yu, F. Lee, W.H. Huang, Pediatr. Nephrol. 26, 233 (2011)CrossRef M.C. Yu, M.S. Yu, M.K. Yu, F. Lee, W.H. Huang, Pediatr. Nephrol. 26, 233 (2011)CrossRef
24.
Zurück zum Zitat C. Dagdeviren, Y. Su, P. Joe, R. Yona, Y. Liu, Y. Kim, Y. Huang, A.R. Damadoran, J. Xia, L.W. Martin, Y. Huang, J.A. Rogers, Nat. Commun. 5, 4496 (2014)CrossRef C. Dagdeviren, Y. Su, P. Joe, R. Yona, Y. Liu, Y. Kim, Y. Huang, A.R. Damadoran, J. Xia, L.W. Martin, Y. Huang, J.A. Rogers, Nat. Commun. 5, 4496 (2014)CrossRef
25.
Zurück zum Zitat C.L. Choong, M.B. Shim, B.S. Lee, S. Jeon, D.S. Ko, T.H. Kang, J. Bae, S.H. Lee, K.E. Byun, J. Im, Y.J. Jeong, C.E. Park, J.J. Park, U.I. Chung, Adv. Mater. 26, 3451 (2014)CrossRef C.L. Choong, M.B. Shim, B.S. Lee, S. Jeon, D.S. Ko, T.H. Kang, J. Bae, S.H. Lee, K.E. Byun, J. Im, Y.J. Jeong, C.E. Park, J.J. Park, U.I. Chung, Adv. Mater. 26, 3451 (2014)CrossRef
26.
Zurück zum Zitat S.C.B. Mannsfeld, B.C.-K. Tee, R.M. Stoltenberg, C.V.H.-H. Chen, S. Barman, B.V.O. Muir, A.N. Sokolov, C. Reese, Z. Bao, Nat. Mater. 9, 859 (2010)CrossRef S.C.B. Mannsfeld, B.C.-K. Tee, R.M. Stoltenberg, C.V.H.-H. Chen, S. Barman, B.V.O. Muir, A.N. Sokolov, C. Reese, Z. Bao, Nat. Mater. 9, 859 (2010)CrossRef
27.
Zurück zum Zitat L. Pan, A. Chortos, G. Yu, Y. Wang, S. Isaacson, R. Allen, Y. Shi, R. Dauskardt, Z. Bao, Nat. Commun. 5, 3002 (2014) L. Pan, A. Chortos, G. Yu, Y. Wang, S. Isaacson, R. Allen, Y. Shi, R. Dauskardt, Z. Bao, Nat. Commun. 5, 3002 (2014)
28.
Zurück zum Zitat I. Graz, M. Kaltenbrunner, C. Keplinger, R. Schwödiauer, S. Bauer, S.P. Lacour, S. Wagner, Appl. Phys. Lett. 89, 073501 (2006)CrossRef I. Graz, M. Kaltenbrunner, C. Keplinger, R. Schwödiauer, S. Bauer, S.P. Lacour, S. Wagner, Appl. Phys. Lett. 89, 073501 (2006)CrossRef
29.
Zurück zum Zitat I. Muller, R. de Brito, C.E. Pereira, V. Brusamarello, Load cells in force sensing analysis—Theory and a novel application. IEEE Instrum. Meas. Mag. 13(1), 15–19 (2010)CrossRef I. Muller, R. de Brito, C.E. Pereira, V. Brusamarello, Load cells in force sensing analysis—Theory and a novel application. IEEE Instrum. Meas. Mag. 13(1), 15–19 (2010)CrossRef
30.
Zurück zum Zitat E.D. Orth, Semiconductor strain gage pressure transducer, Google Patents (1972) E.D. Orth, Semiconductor strain gage pressure transducer, Google Patents (1972)
32.
Zurück zum Zitat M.H. Lee, H.R. Nicholls, Review article tactile sensing for mechatronics—A state of the art survey. Mechatronics 9(1), 1–31 (1999)CrossRef M.H. Lee, H.R. Nicholls, Review article tactile sensing for mechatronics—A state of the art survey. Mechatronics 9(1), 1–31 (1999)CrossRef
33.
Zurück zum Zitat P.S. Girão, P.M.P. Ramos, O. Postolache, J.M.D. Pereira, Tactile sensors for robotic applications. Measurement 46(3), 1257–1271 (2013)CrossRef P.S. Girão, P.M.P. Ramos, O. Postolache, J.M.D. Pereira, Tactile sensors for robotic applications. Measurement 46(3), 1257–1271 (2013)CrossRef
34.
35.
36.
Zurück zum Zitat K.I. Park, J.H. Son, G.T. Hwang, C.K. Jeong, J. Ryu, M. Koo, I. Choi, S.H. Lee, M. Byun, Z.L. Wang, K.J. Lee, Adv. Mater. 26, 2514 (2014)CrossRef K.I. Park, J.H. Son, G.T. Hwang, C.K. Jeong, J. Ryu, M. Koo, I. Choi, S.H. Lee, M. Byun, Z.L. Wang, K.J. Lee, Adv. Mater. 26, 2514 (2014)CrossRef
38.
Zurück zum Zitat M. Kaltenbrunner, T. Sekitani, J. Reeder, T. Yokota, K. Kuribara, T. Tokuhara, M. Drack, R. Schwodiauer, I. Graz, S. Bauer-Gogonea, S. Bauer, T. Someya, Nature 499, 458 (2013)CrossRef M. Kaltenbrunner, T. Sekitani, J. Reeder, T. Yokota, K. Kuribara, T. Tokuhara, M. Drack, R. Schwodiauer, I. Graz, S. Bauer-Gogonea, S. Bauer, T. Someya, Nature 499, 458 (2013)CrossRef
39.
Zurück zum Zitat J.T. Muth, D.M. Vogt, R.L. Truby, Y. Menguc, D.B. Kolesky, R.J. Wood, J.A. Lewis, Adv. Mater. 26, 6307 (2014)CrossRef J.T. Muth, D.M. Vogt, R.L. Truby, Y. Menguc, D.B. Kolesky, R.J. Wood, J.A. Lewis, Adv. Mater. 26, 6307 (2014)CrossRef
40.
Zurück zum Zitat J.R. Wood, H.D. Wagner, Single-wall carbon nanotubes as molecular pressure sensors. Appl. Phys. Lett. 76(30), 2883–2885 (2000)CrossRef J.R. Wood, H.D. Wagner, Single-wall carbon nanotubes as molecular pressure sensors. Appl. Phys. Lett. 76(30), 2883–2885 (2000)CrossRef
41.
Zurück zum Zitat C.K.M. Fung, M.Q.H. Zhang, R.H.M. Chan, W.J. Li, A PMMA-based micro pressure sensor chip using carbon nanotubes as sensing elements, in Proceeding of the 18th IEEE Conference Micro Electro Mechanical Systems, 2005, pp. 251–254 C.K.M. Fung, M.Q.H. Zhang, R.H.M. Chan, W.J. Li, A PMMA-based micro pressure sensor chip using carbon nanotubes as sensing elements, in Proceeding of the 18th IEEE Conference Micro Electro Mechanical Systems, 2005, pp. 251–254
42.
Zurück zum Zitat X. Lu, M.S. Yavuz, H.-Y. Tuan, B.A. Korgel, Y. Xia, Ultrathin gold nanowires can be obtained by reducing polymeric strands of oleylamine-AuCl complexes formed via aurophilic interaction. J. Am. Chem. Soc. 130, 8900–8901 (2008)CrossRef X. Lu, M.S. Yavuz, H.-Y. Tuan, B.A. Korgel, Y. Xia, Ultrathin gold nanowires can be obtained by reducing polymeric strands of oleylamine-AuCl complexes formed via aurophilic interaction. J. Am. Chem. Soc. 130, 8900–8901 (2008)CrossRef
43.
Zurück zum Zitat Z. Huo, C.-k. Tsung, W. Huang, X. Zhang, P. Yang, Sub-two nanometer single crystal au nanowires. Nano Lett. 8, 2041–2044 (2008)CrossRef Z. Huo, C.-k. Tsung, W. Huang, X. Zhang, P. Yang, Sub-two nanometer single crystal au nanowires. Nano Lett. 8, 2041–2044 (2008)CrossRef
44.
Zurück zum Zitat H. Feng et al., Simple and rapid synthesis of ultrathin gold nanowires, their self-assembly and application in surface-enhanced Raman scattering. Chem. Commun., 1984–1986 (2009) H. Feng et al., Simple and rapid synthesis of ultrathin gold nanowires, their self-assembly and application in surface-enhanced Raman scattering. Chem. Commun., 1984–1986 (2009)
45.
Zurück zum Zitat Y. Chen, Z. Ouyang, M. Gu, W. Cheng, Mechanically strong, optically transparent, giant metal superlattice nanomembranes from ultrathin gold nanowires. Adv. Mater. 25, 80–85 (2013)CrossRef Y. Chen, Z. Ouyang, M. Gu, W. Cheng, Mechanically strong, optically transparent, giant metal superlattice nanomembranes from ultrathin gold nanowires. Adv. Mater. 25, 80–85 (2013)CrossRef
46.
Zurück zum Zitat A. Sánchez-Iglesias et al., Highly transparent and conductive films of densely aligned ultrathin au nanowires monolayers. Nano Lett. 12, 6066–6070 (2012)CrossRef A. Sánchez-Iglesias et al., Highly transparent and conductive films of densely aligned ultrathin au nanowires monolayers. Nano Lett. 12, 6066–6070 (2012)CrossRef
47.
Zurück zum Zitat J. Krantz, T. Stubhan, M. Richter, S. Spallek, I. Litzoy, G.J. Matt, E. Spiecker, C.J. Brabec, Spray-coated silver nano-wires as top electrode layer in semitransparent P3HT:PCMB-based organic solar cell devices. Adv. Funct. Mater. 23, 1711–1717 (2013)CrossRef J. Krantz, T. Stubhan, M. Richter, S. Spallek, I. Litzoy, G.J. Matt, E. Spiecker, C.J. Brabec, Spray-coated silver nano-wires as top electrode layer in semitransparent P3HT:PCMB-based organic solar cell devices. Adv. Funct. Mater. 23, 1711–1717 (2013)CrossRef
48.
Zurück zum Zitat L. Yang, T. Zhang, H. Zhou, S.C. Price, B.J. Wiley, W. You, Solution-processed flexible polymer solar cells with silver nanowire electrodes. ACS Appl. Mater. Interfaces 3, 4075–4084 (2011)CrossRef L. Yang, T. Zhang, H. Zhou, S.C. Price, B.J. Wiley, W. You, Solution-processed flexible polymer solar cells with silver nanowire electrodes. ACS Appl. Mater. Interfaces 3, 4075–4084 (2011)CrossRef
49.
Zurück zum Zitat D.S. Leem, A. Edwards, M. Faist, J. Nelson, D.D.C. Bradley, J.C.D. Mello, Efficient organic solar cells with solution-processed silver nanowire electrodes. Adv. Mater. 23, 4371–4375 (2011)CrossRef D.S. Leem, A. Edwards, M. Faist, J. Nelson, D.D.C. Bradley, J.C.D. Mello, Efficient organic solar cells with solution-processed silver nanowire electrodes. Adv. Mater. 23, 4371–4375 (2011)CrossRef
50.
Zurück zum Zitat S. Wang, X. Zhang, W. Zhao, Flexible and conductive film based on random networks of Ag nanowires, J. Nanomater, no. 456098 (2013). S. Wang, X. Zhang, W. Zhao, Flexible and conductive film based on random networks of Ag nanowires, J. Nanomater, no. 456098 (2013).
51.
Zurück zum Zitat C. Celle, C. Mayousse, E. Moreau, H. Basti, A. Carella, J.P. Simonato, Highly flexible transparent film heaters based on random networks of silver nanowires. Nano Res. 5, 427–433 (2012)CrossRef C. Celle, C. Mayousse, E. Moreau, H. Basti, A. Carella, J.P. Simonato, Highly flexible transparent film heaters based on random networks of silver nanowires. Nano Res. 5, 427–433 (2012)CrossRef
52.
Zurück zum Zitat M. Amjadi, A. Pichitpajongkit, S. Lee, S. Ryu, I. Park, Highly stretchable and sensitive strain sensor based on silver nanowire – Elastomer nanocomposite. ACS Nano 8, 5154–5163 (2014)CrossRef M. Amjadi, A. Pichitpajongkit, S. Lee, S. Ryu, I. Park, Highly stretchable and sensitive strain sensor based on silver nanowire – Elastomer nanocomposite. ACS Nano 8, 5154–5163 (2014)CrossRef
53.
Zurück zum Zitat Q. Fan, Z. Qin, S. Gao, Y. Wu, J. Pionteck, E. Mader, M. Zhu, The use of a carbon nanotube layer on a polyurethane multifilament substrate for monitoring strains as large as 400%. Carbon 50, 4085–4092 (2012)CrossRef Q. Fan, Z. Qin, S. Gao, Y. Wu, J. Pionteck, E. Mader, M. Zhu, The use of a carbon nanotube layer on a polyurethane multifilament substrate for monitoring strains as large as 400%. Carbon 50, 4085–4092 (2012)CrossRef
54.
Zurück zum Zitat S. Luo, T. Liu, Structure-property-processing relationships of single-wall carbon nanotube thin film Piezo-resistive sensors. Carbon 59, 315–324 (2013)CrossRef S. Luo, T. Liu, Structure-property-processing relationships of single-wall carbon nanotube thin film Piezo-resistive sensors. Carbon 59, 315–324 (2013)CrossRef
55.
Zurück zum Zitat X. Xu, R. Ray, Y. Gu, H.J. Ploehn, L. Gearheart, K. Raker, W.A. Scrivens, J. Am. Chem. Soc. 126, 12736 (2004)CrossRef X. Xu, R. Ray, Y. Gu, H.J. Ploehn, L. Gearheart, K. Raker, W.A. Scrivens, J. Am. Chem. Soc. 126, 12736 (2004)CrossRef
56.
Zurück zum Zitat J. Shen, Y. Zhu, X. Yang, C. Li, Graphene quantum dots: emergent nanolights for bioimaging, sensors, catalysis and photovoltaic devices. Chem. Commun. 48, 3686–3699 (2012)CrossRef J. Shen, Y. Zhu, X. Yang, C. Li, Graphene quantum dots: emergent nanolights for bioimaging, sensors, catalysis and photovoltaic devices. Chem. Commun. 48, 3686–3699 (2012)CrossRef
57.
Zurück zum Zitat S. Zhu, S. Tang, J. Zhang, B. Yang, Control the size and surface chemistry of graphene for the rising fluorescent materials. Chem. Commun. 48, 4527–4539 (2012)CrossRef S. Zhu, S. Tang, J. Zhang, B. Yang, Control the size and surface chemistry of graphene for the rising fluorescent materials. Chem. Commun. 48, 4527–4539 (2012)CrossRef
58.
Zurück zum Zitat Z.P. Zhang, J. Zhang, N. Chen, L.T. Qu, Tailored graphene systems for unconventional applications in energy conversion and storage devices, energy. Environ. Sci. 5, 8869–8890 (2012) Z.P. Zhang, J. Zhang, N. Chen, L.T. Qu, Tailored graphene systems for unconventional applications in energy conversion and storage devices, energy. Environ. Sci. 5, 8869–8890 (2012)
59.
Zurück zum Zitat L. Li, G. Wu, G. Yang, J. Peng, J. Zhao, J.-J. Zhu, Focusing on luminescent graphene quantum dots: Current status and future perspectives. Nanoscale 5, 4015–4039 (2013)CrossRef L. Li, G. Wu, G. Yang, J. Peng, J. Zhao, J.-J. Zhu, Focusing on luminescent graphene quantum dots: Current status and future perspectives. Nanoscale 5, 4015–4039 (2013)CrossRef
60.
Zurück zum Zitat N. Mohanty, D. Moore, Z. Xu, T.S. Sreeprasad, A. Nagaraja, A.A. Rodriguez, V. Berry, Nanotomy-based production of transferable and dispersible graphene nanostructures of controlled shape and size. Nat. Commun. 3, 844 (2012)CrossRef N. Mohanty, D. Moore, Z. Xu, T.S. Sreeprasad, A. Nagaraja, A.A. Rodriguez, V. Berry, Nanotomy-based production of transferable and dispersible graphene nanostructures of controlled shape and size. Nat. Commun. 3, 844 (2012)CrossRef
61.
Zurück zum Zitat K.S. Novoselov, D. Jiang, F. Schedin, T.J. Booth, V.V. Khotkevich, S.V. Morozov, A.K. Geim, Two-dimensional atomic crystals. Proc. Natl. Acad. Sci. U. S. A. 102, 10451–10453 (2005)CrossRef K.S. Novoselov, D. Jiang, F. Schedin, T.J. Booth, V.V. Khotkevich, S.V. Morozov, A.K. Geim, Two-dimensional atomic crystals. Proc. Natl. Acad. Sci. U. S. A. 102, 10451–10453 (2005)CrossRef
62.
Zurück zum Zitat J.S. Bunch, Y. Yaish, M. Brink, K. Bolotin, P.L. McEuen, Coulomb oscillations and hall effect in quasi-2D graphite quantum dots. Nano Lett. 5, 287–290 (2005)CrossRef J.S. Bunch, Y. Yaish, M. Brink, K. Bolotin, P.L. McEuen, Coulomb oscillations and hall effect in quasi-2D graphite quantum dots. Nano Lett. 5, 287–290 (2005)CrossRef
63.
Zurück zum Zitat F. Libisch, C. Stampfer, J. Burgdorfer, Graphene quantum dots: Beyond a Dirac billiard. Phys. Rev. B 79, 115423 (2009)CrossRef F. Libisch, C. Stampfer, J. Burgdorfer, Graphene quantum dots: Beyond a Dirac billiard. Phys. Rev. B 79, 115423 (2009)CrossRef
64.
Zurück zum Zitat K.A. Ritter, J.W. Lyding, The influence of edge structure on the electronic properties of graphene quantum dots and nanoribbons. Nat. Mater. 8, 235−242 (2009)CrossRef K.A. Ritter, J.W. Lyding, The influence of edge structure on the electronic properties of graphene quantum dots and nanoribbons. Nat. Mater. 8, 235−242 (2009)CrossRef
65.
Zurück zum Zitat T.S. Sreeprasad, V. Berry, How do the electrical properties of graphene change with its functionalization. Small 9, 341–350 (2012) T.S. Sreeprasad, V. Berry, How do the electrical properties of graphene change with its functionalization. Small 9, 341–350 (2012)
66.
Zurück zum Zitat T.S. Sreeprasad, A.A. Rodriguez, J. Colston, A. Graham, E. Shishkin, V. Pallem, V. Berry, Electron-tunneling modulation in percolating network of graphene quantum dots: Fabrication, phenomenological understanding, and humidity/pressure sensing applications. Nano Lett. 13, 1757–1763 (2013)CrossRef T.S. Sreeprasad, A.A. Rodriguez, J. Colston, A. Graham, E. Shishkin, V. Pallem, V. Berry, Electron-tunneling modulation in percolating network of graphene quantum dots: Fabrication, phenomenological understanding, and humidity/pressure sensing applications. Nano Lett. 13, 1757–1763 (2013)CrossRef
67.
Zurück zum Zitat E. Massera, V. La Ferrara, M. Miglietta, T. Polichetti, I. Nasti, G. Di Francia, Gas sensors based on graphene. Chem. Today 29, 39–41 (2011) E. Massera, V. La Ferrara, M. Miglietta, T. Polichetti, I. Nasti, G. Di Francia, Gas sensors based on graphene. Chem. Today 29, 39–41 (2011)
68.
Zurück zum Zitat Y.S. Chen, G.W. Hsieh, S.P. Chen, P.Y. Tseng, C.W. Wang, Zinc oxide nanowire-poly(methyl methacrylate) dielectric layers for polymer capacitive pressure sensors. ACS Appl. Mater. Interf. 7, 45−50 (2015) Y.S. Chen, G.W. Hsieh, S.P. Chen, P.Y. Tseng, C.W. Wang, Zinc oxide nanowire-poly(methyl methacrylate) dielectric layers for polymer capacitive pressure sensors. ACS Appl. Mater. Interf. 7, 45−50 (2015)
Metadaten
Titel
Design and Fabrication of Nanomaterial-Based Device for Pressure Sensorial Applications
verfasst von
Rohit Srivastava
Jayeeta Chattopadhyay
Copyright-Jahr
2017
Verlag
Springer Singapore
DOI
https://doi.org/10.1007/978-981-10-5346-7_1

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.