Skip to main content

2017 | OriginalPaper | Buchkapitel

13. Design Optimization and Reliability Analysis of Variable Stiffness Composite Structures

verfasst von : A. Sohouli, M. Yildiz, A. Suleman

Erschienen in: Smart Structures and Materials

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This paper presents a study on the reliability analysis of variable stiffness composites to improve the performance of curved fiber composites in the presence of uncertainties. A comparison to the response of conventional straight fiber composites is presented while assuming the same material properties. To this end, a computational design framework for advanced composites has been developed and implemented and it includes both deterministic and reliability analysis capabilities. The deterministic design module uses the Discrete Material Optimization (DMO) technique, and the reliability analysis module uses the Response Surface Method (RSM) based on the First Order Reliability Method (FORM) and the Monte Carlo Simulation (MCS). Variable Stiffness Composite Laminates (VSCL) are achieved by a continuous change in fiber orientation in the plane of the laminate. The design objective is to tailor and/or maximize the stiffness of the composite structure, and the design variables are the piecewise patch orientations of the fibers in the presence of manufacturing constraints. The manufacturing constraints enforce a bounded change in fiber orientation between adjacent patches in order to ensure fiber continuity to minimize gaps and overlaps. In the reliability analysis, tip deflection and first ply failure are considered separately as the limit state function and the random variables are material properties. The results show that the VSCL are more reliable even in the presence of a high standard deviation compared to the straight fiber composites with low standard deviation assuming the same material properties. It was also observed that the curved fiber composites are more effective in handling concentrated stresses.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Leissa AW, Martin AF (1990) Vibration and buckling of rectangular composite plates with variable fiber spacing. Compos Struct 14:339–357CrossRef Leissa AW, Martin AF (1990) Vibration and buckling of rectangular composite plates with variable fiber spacing. Compos Struct 14:339–357CrossRef
2.
Zurück zum Zitat Curry JM, Johnson ER, Starnes JH (1992) Effect of dropped plies on the strength of graphite–epoxy laminates. AIAA J 30(2):449–456CrossRef Curry JM, Johnson ER, Starnes JH (1992) Effect of dropped plies on the strength of graphite–epoxy laminates. AIAA J 30(2):449–456CrossRef
3.
Zurück zum Zitat Setoodeh S, Abdalla MM, IJsselmuiden ST, Gürdal Z (2009) Design of variable-stiffness composite panels for maximum buckling load. Compos Struct 87:17–109 Setoodeh S, Abdalla MM, IJsselmuiden ST, Gürdal Z (2009) Design of variable-stiffness composite panels for maximum buckling load. Compos Struct 87:17–109
4.
Zurück zum Zitat Akhavan H, Ribeiro P (2011) Natural modes of vibration of variable stiffness composite laminates with curvilinear fibers. Compos Struct 93:3040–3047CrossRef Akhavan H, Ribeiro P (2011) Natural modes of vibration of variable stiffness composite laminates with curvilinear fibers. Compos Struct 93:3040–3047CrossRef
5.
Zurück zum Zitat Akhavan H, Ribeiro P, Moura MFSF (2013) Large deflection and stresses in variable stiffness composite laminates with curvilinear fibres. Int J Mech Sci 73:14–26CrossRef Akhavan H, Ribeiro P, Moura MFSF (2013) Large deflection and stresses in variable stiffness composite laminates with curvilinear fibres. Int J Mech Sci 73:14–26CrossRef
6.
Zurück zum Zitat Ribeiro P, Akhavan H (2012) Non-linear vibrations of variable stiffness composite laminated plates. Compos Struct 94:2424–2432CrossRef Ribeiro P, Akhavan H (2012) Non-linear vibrations of variable stiffness composite laminated plates. Compos Struct 94:2424–2432CrossRef
7.
Zurück zum Zitat Dang TD, Hallett SR (2013) A numerical study on impact and compression after impact behavior of variable angle tow laminates. Compos Struct 96:194–206CrossRef Dang TD, Hallett SR (2013) A numerical study on impact and compression after impact behavior of variable angle tow laminates. Compos Struct 96:194–206CrossRef
8.
Zurück zum Zitat Ribeiro P, Akhavan H, Teter A, Warminski J (2014) A review on the mechanical behaviour of curvilinear fibre composite laminated panels. J Compos Mater 48(22):2761–2777CrossRef Ribeiro P, Akhavan H, Teter A, Warminski J (2014) A review on the mechanical behaviour of curvilinear fibre composite laminated panels. J Compos Mater 48(22):2761–2777CrossRef
9.
Zurück zum Zitat IJsselmuiden ST (2011) Optimal design of variable stiffness composite structures using lamination parameters. Ph.D. thesis; Delft University of Technology IJsselmuiden ST (2011) Optimal design of variable stiffness composite structures using lamination parameters. Ph.D. thesis; Delft University of Technology
10.
Zurück zum Zitat Duvaut G, Terrel G (2000) F. Lene´; Optimization of fiber reinforced composites. Compos Struct 48:83–89CrossRef Duvaut G, Terrel G (2000) F. Lene´; Optimization of fiber reinforced composites. Compos Struct 48:83–89CrossRef
11.
Zurück zum Zitat Hyer MW, Charette RF (1991) Use of curvilinear fiber format in composite structure design. AIAA J 29(6):1011–1015CrossRef Hyer MW, Charette RF (1991) Use of curvilinear fiber format in composite structure design. AIAA J 29(6):1011–1015CrossRef
12.
Zurück zum Zitat Stegmann J, Lund E (2005) Discrete material optimization of general composite shell structures. Int J Numer Meth Eng 62(14):2009–2027CrossRefMATH Stegmann J, Lund E (2005) Discrete material optimization of general composite shell structures. Int J Numer Meth Eng 62(14):2009–2027CrossRefMATH
13.
Zurück zum Zitat Sørensen SN, Lund E (2013) Topology and thickness optimization of laminated composites including manufacturing constraints. Struct Multi Optim 48:249–265MathSciNetCrossRef Sørensen SN, Lund E (2013) Topology and thickness optimization of laminated composites including manufacturing constraints. Struct Multi Optim 48:249–265MathSciNetCrossRef
14.
Zurück zum Zitat Overgaard LCT, Lund E, Thomsen OT (2010) Structural collapse of a wind turbine blade. Part A: Static test and equivalent single layered models. Compos A Appl Sci Manuf 41:257–270CrossRef Overgaard LCT, Lund E, Thomsen OT (2010) Structural collapse of a wind turbine blade. Part A: Static test and equivalent single layered models. Compos A Appl Sci Manuf 41:257–270CrossRef
15.
Zurück zum Zitat Lund E (2009) Buckling topology optimization of laminated multi-material composite shell structures. Compos Struct 91:157–158CrossRef Lund E (2009) Buckling topology optimization of laminated multi-material composite shell structures. Compos Struct 91:157–158CrossRef
16.
Zurück zum Zitat Sohouli AR, Suleman A (2014) Modeling and optimization of curvilinear fiber composites. In: Design, manufacturing and applications of composites tenth workshop. Vancouver, Canada Sohouli AR, Suleman A (2014) Modeling and optimization of curvilinear fiber composites. In: Design, manufacturing and applications of composites tenth workshop. Vancouver, Canada
17.
Zurück zum Zitat Sriramula S, Chryssanthopoulos MK (2009) Quantification of uncertainty modelling in stochastic analysis of FRP composites. Compos A 40(11):1673–1684CrossRef Sriramula S, Chryssanthopoulos MK (2009) Quantification of uncertainty modelling in stochastic analysis of FRP composites. Compos A 40(11):1673–1684CrossRef
18.
Zurück zum Zitat Chiachio M, Chiachio J, Rus G (2012) Reliability in composites—a selective review and survey of current development. Compos B 43(3):902–913CrossRef Chiachio M, Chiachio J, Rus G (2012) Reliability in composites—a selective review and survey of current development. Compos B 43(3):902–913CrossRef
19.
Zurück zum Zitat Sciuva MD, Lomario D (2003) A comparison between Monte Carlo and FORMs in calculating the reliability of a composite structure. Compos Struct 59(1):155–162CrossRef Sciuva MD, Lomario D (2003) A comparison between Monte Carlo and FORMs in calculating the reliability of a composite structure. Compos Struct 59(1):155–162CrossRef
20.
Zurück zum Zitat Jeong HK, Shenoi RA (2000) Probabilistic strength analysis of rectangular FRP plates using Monte Carlo simulation. Compos Struct 76(1–3):219–235CrossRef Jeong HK, Shenoi RA (2000) Probabilistic strength analysis of rectangular FRP plates using Monte Carlo simulation. Compos Struct 76(1–3):219–235CrossRef
21.
Zurück zum Zitat Frangopol DM, Recek S (2003) Reliability of fiber-reinforced composite laminate plates. Probab Eng Mech 18(2):137–199CrossRef Frangopol DM, Recek S (2003) Reliability of fiber-reinforced composite laminate plates. Probab Eng Mech 18(2):137–199CrossRef
22.
Zurück zum Zitat Kim BC, Potter K, Weaver PM (2012) Continuous tow shearing for manufacturing variable angle tow composites. Compos A Appl Sci Manuf 43:1347–1356CrossRef Kim BC, Potter K, Weaver PM (2012) Continuous tow shearing for manufacturing variable angle tow composites. Compos A Appl Sci Manuf 43:1347–1356CrossRef
23.
Zurück zum Zitat Kennedy GJ, Martins J (2012) A regularized discrete laminate parametrization technique with applications to wing-box design optimization. In: Proceedings of 53rd Structures, Structural Dynamics, and Materials Conference. Honolulu, HI Kennedy GJ, Martins J (2012) A regularized discrete laminate parametrization technique with applications to wing-box design optimization. In: Proceedings of 53rd Structures, Structural Dynamics, and Materials Conference. Honolulu, HI
24.
Zurück zum Zitat Haftka RT, Gurdal Z (1991) Elements of structural optimization. Dordrecht, Kluwer Haftka RT, Gurdal Z (1991) Elements of structural optimization. Dordrecht, Kluwer
25.
26.
Zurück zum Zitat Li L, Khandelwal K (2015) Volume preserving projection filters and continuation methods in topology optimization. Eng Struct 85:144–161CrossRef Li L, Khandelwal K (2015) Volume preserving projection filters and continuation methods in topology optimization. Eng Struct 85:144–161CrossRef
27.
Zurück zum Zitat Vanderplaats GN (1984) Numerical optimization techniques for engineering design. McGraw-Hill, New York Vanderplaats GN (1984) Numerical optimization techniques for engineering design. McGraw-Hill, New York
28.
Zurück zum Zitat Byrd RH, Lu P, Nocedal J (1995) A limited memory algorithm for bound constrained optimization. SIAM J Sci Stat Comput 16(5):1190–1208MathSciNetCrossRefMATH Byrd RH, Lu P, Nocedal J (1995) A limited memory algorithm for bound constrained optimization. SIAM J Sci Stat Comput 16(5):1190–1208MathSciNetCrossRefMATH
29.
Zurück zum Zitat Raychaudhuri S (2008) Introduction to Monte Carlo simulation. In: Proceedings of the 2008 winter simulation conference Raychaudhuri S (2008) Introduction to Monte Carlo simulation. In: Proceedings of the 2008 winter simulation conference
30.
Zurück zum Zitat Hasofer A, Lind N (1974) Exact and Invariant Second-Moment Code Format. J Eng Mech Div ASCE 100:111–121 Hasofer A, Lind N (1974) Exact and Invariant Second-Moment Code Format. J Eng Mech Div ASCE 100:111–121
31.
Zurück zum Zitat Gavin HP, Yau SC (2008) High order limit state functions in the response surface method for structural reliability analysis. Struct Saf 30:162–179CrossRef Gavin HP, Yau SC (2008) High order limit state functions in the response surface method for structural reliability analysis. Struct Saf 30:162–179CrossRef
32.
Zurück zum Zitat Kaw AK (2006) Mechanics of composites materials 2006, 2nd edn. Boca Raton, CRC Taylor & Francis Group Kaw AK (2006) Mechanics of composites materials 2006, 2nd edn. Boca Raton, CRC Taylor & Francis Group
Metadaten
Titel
Design Optimization and Reliability Analysis of Variable Stiffness Composite Structures
verfasst von
A. Sohouli
M. Yildiz
A. Suleman
Copyright-Jahr
2017
DOI
https://doi.org/10.1007/978-3-319-44507-6_13

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.