Skip to main content
Erschienen in: Neural Computing and Applications 10/2020

24.01.2019 | Original Article

Detection and segmentation of iron ore green pellets in images using lightweight U-net deep learning network

verfasst von: Jiaxu Duan, Xiaoyan Liu, Xin Wu, Chuangang Mao

Erschienen in: Neural Computing and Applications | Ausgabe 10/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In steel manufacturing industry, powdered iron ore is agglomerated in a pelletizing disk to form iron ore green pellets. The agglomeration process is usually monitored using a camera. As pellet size distribution is one of the major measures of product quality monitoring, pellets detection and segmentation from the image are the key steps to determine the pellet size. Traditional image processing algorithms are not only challenged by the complicated constitution of pellets, sediment and residuals in the image, but also by the harsh and unbalanced light reflection on the pellet centrum area and the background which results in tedious parameter adjustment work and pool performance. To solve these problems, we design a lightweight U-net deep learning network to automatically detect pellets from images and to obtain the probability maps of pellet contours. Compared to classic U-net, the proposed network has fewer parameters and introduces batch normalization layers, which greatly reduces the computing time and improves generalization ability of the network. A concentric circle model is then used to separate clumped contours of the pellets, and the pellets shapes are detected via ellipse fitting. The proposed method is verified using images captured from an industrial pelletizing disk, and its performance is compared with traditional methods and the classic U-net. Results show that the proposed method achieves better segmentation performance in DICE and ROC indexes and shows good robustness to uneven illumination. Tests on temporal image sequences demonstrate that the proposed method is effective in monitoring the pellet size distribution and the pellet shape as well. Results of this work have potential usage in online detection of iron ore green pellets and other types of particles.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat e Silva BB, da Cunha ER, de Carvalho RM, Tavares LM (2018) Modeling and simulation of green iron ore pellet classification in a single deck roller screen using the discrete element method. Powder Technol 332:359–370CrossRef e Silva BB, da Cunha ER, de Carvalho RM, Tavares LM (2018) Modeling and simulation of green iron ore pellet classification in a single deck roller screen using the discrete element method. Powder Technol 332:359–370CrossRef
2.
Zurück zum Zitat Liao CW, Tarng YS (2009) On-line automatic optical system for coarse particle size distribution. Powder Technol 189:508–513CrossRef Liao CW, Tarng YS (2009) On-line automatic optical system for coarse particle size distribution. Powder Technol 189:508–513CrossRef
3.
Zurück zum Zitat Facco P, Santomaso AC, Barolo M (2017) Artificial vision system for particle size characterization from bulk materials. Chem Eng Sci 164:246–257CrossRef Facco P, Santomaso AC, Barolo M (2017) Artificial vision system for particle size characterization from bulk materials. Chem Eng Sci 164:246–257CrossRef
4.
Zurück zum Zitat Laitinen N, Antikainen O, Yliruusi J (2002) Does a powder surface contain all necessary information for particle size distribution analysis? Eur J Pharm Sci 17:217–227CrossRef Laitinen N, Antikainen O, Yliruusi J (2002) Does a powder surface contain all necessary information for particle size distribution analysis? Eur J Pharm Sci 17:217–227CrossRef
5.
Zurück zum Zitat Sandler N (2011) Photometric imaging in particle size measurement and surface visualization. Int J Pharm 417:227–234CrossRef Sandler N (2011) Photometric imaging in particle size measurement and surface visualization. Int J Pharm 417:227–234CrossRef
6.
Zurück zum Zitat Heydari M, Amirfattahi R, Nazari B, Rahimi P (2016) An industrial image processing-based approach for estimation of iron ore green pellet size distribution. Powder Technol 303:260–268CrossRef Heydari M, Amirfattahi R, Nazari B, Rahimi P (2016) An industrial image processing-based approach for estimation of iron ore green pellet size distribution. Powder Technol 303:260–268CrossRef
7.
Zurück zum Zitat Hamzeloo E, Massinaei M, Mehrshad N (2014) Estimate of particle size distribution on an industrial conveyor belt using image analysis and neural networks. Powder Technol 261:185–190CrossRef Hamzeloo E, Massinaei M, Mehrshad N (2014) Estimate of particle size distribution on an industrial conveyor belt using image analysis and neural networks. Powder Technol 261:185–190CrossRef
8.
Zurück zum Zitat Thurley M (2014) Measuring the visible particles for automated online particle size distribution estimation. In: IMPC 2014, 20–24 Oct 2014, Santiago, Chile Thurley M (2014) Measuring the visible particles for automated online particle size distribution estimation. In: IMPC 2014, 20–24 Oct 2014, Santiago, Chile
9.
Zurück zum Zitat Heydari M, Amirfattahi R, Nazari B, Rahimi P (2016) An industrial image processing-based approach for estimation of iron ore green pellet size distribution. Powder Technol 303:260–268CrossRef Heydari M, Amirfattahi R, Nazari B, Rahimi P (2016) An industrial image processing-based approach for estimation of iron ore green pellet size distribution. Powder Technol 303:260–268CrossRef
10.
Zurück zum Zitat Subramanyam V, Patra P, Singh MK (2017) Automatic image processing based size characterization of green pellets. Int J Autom Smart 7(3):85–91CrossRef Subramanyam V, Patra P, Singh MK (2017) Automatic image processing based size characterization of green pellets. Int J Autom Smart 7(3):85–91CrossRef
11.
Zurück zum Zitat Roozbahani MM, Borela R, Frost JD (2017) Pore size distribution in granular material microstructure. Materials 10(11):1237–1257CrossRef Roozbahani MM, Borela R, Frost JD (2017) Pore size distribution in granular material microstructure. Materials 10(11):1237–1257CrossRef
12.
Zurück zum Zitat Nellros F, Thurley MJ (2011) Automated image analysis of iron-ore pellet structure using optical microscopy. Miner Eng 24(14):1525–1531CrossRef Nellros F, Thurley MJ (2011) Automated image analysis of iron-ore pellet structure using optical microscopy. Miner Eng 24(14):1525–1531CrossRef
13.
Zurück zum Zitat Budzan S, Pawełczyk M (2016) Grain size determination and classification using adaptive image segmentation with shape-context information for indirect mill faults detection. In: International Congress on Technical Diagnosis, ICDT 2016, 12–16 Sept 2016, Gliwice, Poland, pp 215–224 Budzan S, Pawełczyk M (2016) Grain size determination and classification using adaptive image segmentation with shape-context information for indirect mill faults detection. In: International Congress on Technical Diagnosis, ICDT 2016, 12–16 Sept 2016, Gliwice, Poland, pp 215–224
14.
Zurück zum Zitat Budzan S, Pawełczyk M (2018) Grain size determination and classification using adaptive image segmentation with grain shape information for milling quality evaluation. Diagnostyka 19(1):41–48CrossRef Budzan S, Pawełczyk M (2018) Grain size determination and classification using adaptive image segmentation with grain shape information for milling quality evaluation. Diagnostyka 19(1):41–48CrossRef
15.
Zurück zum Zitat Lu ZM, Zhu FC, Gao XY et al (2018) In-situ particle segmentation approach based on average background modeling and graph-cut for the monitoring of l-glutamic acid crystallization. Chemom Intell Lab Syst 178:11–23CrossRef Lu ZM, Zhu FC, Gao XY et al (2018) In-situ particle segmentation approach based on average background modeling and graph-cut for the monitoring of l-glutamic acid crystallization. Chemom Intell Lab Syst 178:11–23CrossRef
16.
Zurück zum Zitat Zhang B, Abbas A, Romagnoli JA (2011) Multi-resolution fuzzy clustering approach for image-based particle characterization for particle systems. Chemom Intell Lab Syst 107(1):155–164CrossRef Zhang B, Abbas A, Romagnoli JA (2011) Multi-resolution fuzzy clustering approach for image-based particle characterization for particle systems. Chemom Intell Lab Syst 107(1):155–164CrossRef
17.
Zurück zum Zitat Chalfoun J, Majurski M, Dima A et al (2014) FogBank: a single cell segmentation across multiple cell lines and image modalities. BMC Bioinform 15:431CrossRef Chalfoun J, Majurski M, Dima A et al (2014) FogBank: a single cell segmentation across multiple cell lines and image modalities. BMC Bioinform 15:431CrossRef
20.
Zurück zum Zitat Plissiti ME, Nikou C (2012) Overlapping cell nuclei segmentation using a spatially adaptive active physical model. IEEE Trans Image Process 21(11):4568–4580MathSciNetMATHCrossRef Plissiti ME, Nikou C (2012) Overlapping cell nuclei segmentation using a spatially adaptive active physical model. IEEE Trans Image Process 21(11):4568–4580MathSciNetMATHCrossRef
21.
Zurück zum Zitat Fabijanska A (2018) Segmentation of corneal endothelium images using a U-Net-based convolutional neural network. Artif Intell Med 88:1–13CrossRef Fabijanska A (2018) Segmentation of corneal endothelium images using a U-Net-based convolutional neural network. Artif Intell Med 88:1–13CrossRef
22.
Zurück zum Zitat Park JW, Carranza A, Jiang Z (2017) Semantic segmentation of 3D particle interaction data using fully convolutional DenseNet. In: 2017 IEEE conference on computer vision and pattern recognition workshops. Honolulu, Hawaii, USA, 21–26 July 2017 Park JW, Carranza A, Jiang Z (2017) Semantic segmentation of 3D particle interaction data using fully convolutional DenseNet. In: 2017 IEEE conference on computer vision and pattern recognition workshops. Honolulu, Hawaii, USA, 21–26 July 2017
24.
Zurück zum Zitat Ronneberger O, Fischer P, Brox T (2015) U-net: convolutional networks for biomedical image segmentation. In: Medical image computing and computer-assisted intervention (MICCAI), LNCS, vol 9351, pp 234–241 Ronneberger O, Fischer P, Brox T (2015) U-net: convolutional networks for biomedical image segmentation. In: Medical image computing and computer-assisted intervention (MICCAI), LNCS, vol 9351, pp 234–241
25.
Zurück zum Zitat Ying X, Zhanyi H (2004) Catadioptric camera calibration using geometric invariants. IEEE PAMI 26(10):1260–1271CrossRef Ying X, Zhanyi H (2004) Catadioptric camera calibration using geometric invariants. IEEE PAMI 26(10):1260–1271CrossRef
26.
Zurück zum Zitat Fitzgibbon A, Pilu M, Fisher RB (1999) Direct least square fitting of ellipses. IEEE PAMI 21(5):476–480CrossRef Fitzgibbon A, Pilu M, Fisher RB (1999) Direct least square fitting of ellipses. IEEE PAMI 21(5):476–480CrossRef
27.
Zurück zum Zitat Felzenszwalb PF, Huttenlocher DP (2004) Distance transforms of sampled functions. Theory Comput 8(19):415–428MathSciNetMATH Felzenszwalb PF, Huttenlocher DP (2004) Distance transforms of sampled functions. Theory Comput 8(19):415–428MathSciNetMATH
28.
Zurück zum Zitat Roerdink JBTM, Meijster A (2001) The watershed transform: definitions, algorithms and parallelization strategies. Fundam Inform 41:187–228MathSciNetMATHCrossRef Roerdink JBTM, Meijster A (2001) The watershed transform: definitions, algorithms and parallelization strategies. Fundam Inform 41:187–228MathSciNetMATHCrossRef
29.
Zurück zum Zitat Vincent L (1990) Algorithmes Morphologiques a Base de Files d’Attente et de Lacets. Extension aux Graphes. PhD thesis, Ecole Nationale Sup´erieure des Mines de Paris, Fontainebleau Vincent L (1990) Algorithmes Morphologiques a Base de Files d’Attente et de Lacets. Extension aux Graphes. PhD thesis, Ecole Nationale Sup´erieure des Mines de Paris, Fontainebleau
30.
Zurück zum Zitat Vincent L, Soille P (1991) Watersheds in digital spaces: an efficient algorithm based on immersion simulations. IEEE Trans Pattern Anal Mach Intell 13(6):583–598CrossRef Vincent L, Soille P (1991) Watersheds in digital spaces: an efficient algorithm based on immersion simulations. IEEE Trans Pattern Anal Mach Intell 13(6):583–598CrossRef
31.
Zurück zum Zitat Koomsap P, Chansri N (2014) Topological hierarchy-contour tracing algorithm for nests of interconnected contours. Int J Adv Manuf Technol 70:1247–1266CrossRef Koomsap P, Chansri N (2014) Topological hierarchy-contour tracing algorithm for nests of interconnected contours. Int J Adv Manuf Technol 70:1247–1266CrossRef
32.
Zurück zum Zitat Liu Q, Hong X, Zou B et al (2017) Hierarchical contour closure-based holistic salient object detection. IEEE Trans Image Process 26(9):4537–4552MathSciNetMATHCrossRef Liu Q, Hong X, Zou B et al (2017) Hierarchical contour closure-based holistic salient object detection. IEEE Trans Image Process 26(9):4537–4552MathSciNetMATHCrossRef
33.
Zurück zum Zitat Arbeláez P, Maire M, Fowlkes C, Malik J (2011) Contour detection and hierarchical image segmentation. IEEE Trans Pattern Anal Mach Intell 33(5):898–916CrossRef Arbeláez P, Maire M, Fowlkes C, Malik J (2011) Contour detection and hierarchical image segmentation. IEEE Trans Pattern Anal Mach Intell 33(5):898–916CrossRef
34.
Zurück zum Zitat Takashimizu Y, Iiyoshi M (2016) New parameter of roundness R: circularity corrected by aspect ratio. Prog Earth Planet Sci 3(1):1–16CrossRef Takashimizu Y, Iiyoshi M (2016) New parameter of roundness R: circularity corrected by aspect ratio. Prog Earth Planet Sci 3(1):1–16CrossRef
35.
Zurück zum Zitat Kaushal B, Jain K, Sharma SK (2014) Estimation of area under receiver operating characteristic curve for bi-pareto and bi-two parameter exponential models. Open J Stat 4:1–10CrossRef Kaushal B, Jain K, Sharma SK (2014) Estimation of area under receiver operating characteristic curve for bi-pareto and bi-two parameter exponential models. Open J Stat 4:1–10CrossRef
36.
Zurück zum Zitat Gui N, Yang X, Jiyuan T, Jiang S (2017) Effect of roundness on the discharge flow of granular particles. Powder Technol 314:140–147CrossRef Gui N, Yang X, Jiyuan T, Jiang S (2017) Effect of roundness on the discharge flow of granular particles. Powder Technol 314:140–147CrossRef
Metadaten
Titel
Detection and segmentation of iron ore green pellets in images using lightweight U-net deep learning network
verfasst von
Jiaxu Duan
Xiaoyan Liu
Xin Wu
Chuangang Mao
Publikationsdatum
24.01.2019
Verlag
Springer London
Erschienen in
Neural Computing and Applications / Ausgabe 10/2020
Print ISSN: 0941-0643
Elektronische ISSN: 1433-3058
DOI
https://doi.org/10.1007/s00521-019-04045-8

Weitere Artikel der Ausgabe 10/2020

Neural Computing and Applications 10/2020 Zur Ausgabe