Skip to main content
Erschienen in: Metallurgical and Materials Transactions B 1/2008

01.02.2008

Determination of Density Distribution Functions of the Apparent Activation Energies for Nonisothermal Decomposition Process of Sodium Bicarbonate Using the Weibull Probability Function

verfasst von: Bojan Janković

Erschienen in: Metallurgical and Materials Transactions B | Ausgabe 1/2008

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstact

The procedure for the determination of density distribution functions of the apparent activation energies (ddfE a s), for the nonisothermal decomposition process of sodium bicarbonate under a nitrogen atmosphere was established. It was found that the experimental integral and differential conversion curves at different heating rates can be successfully described by the nonisothermal Weibull distribution function (Wdf), in wide range of the degree of conversion (α = 0.15 to 0.98). It was established that the Weibull distribution parameters (β and η) show the different dependences on the heating rate of the system (v h ). It was found that the rate equation, expressed through the Weibull (nonisothermal) probability density function (Wpdf), can be used for the description of the sodium bicarbonate decomposition process under dynamic conditions. It was also established that the skewness of the Wpdf shows negative values and increases with an increase in the heating rate, but stays below the zero point. By applying the model independent (Friedman) method, the complex dependence of apparent activation energy (E a ) on the degree of conversion (α) was established. It was shown that in the conversion range of 0.25 ≤ α ≤ 0.95, the E a is practically constant (95.4 kJmol−1). It was concluded that the calculated ddfEas are dependent on the heating rate of the system. The heating rate has the influence on the skewness of the Wpdfs, but does not change the reaction profile of the considered decomposition process. The complex dependence between the kinetic parameters (A and E a ) for the considered decomposition process was established. The evaluated ddfE as show that the investigated decomposition process follows the same reaction mechanism, i.e., the two-parameter Šesták–Berggren (SB) reaction model. Also, it was concluded that such behavior leads to the complex dependence of E a on the degree of conversion (α), and this dependence is a natural consequence of the existence of the distribution of E a .

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Handbook of Pharmaceutical Excipients, The American Pharmaceutical Association and the Pharmaceutical Society of Great Britain, London, Great Britain, 1986, pp. 56–58 Handbook of Pharmaceutical Excipients, The American Pharmaceutical Association and the Pharmaceutical Society of Great Britain, London, Great Britain, 1986, pp. 56–58
4.
Zurück zum Zitat C.V. Thomasson, D.A. Cunningham: J. Sci. Instrum., 1964, vol. 41, pp. 308–11CrossRef C.V. Thomasson, D.A. Cunningham: J. Sci. Instrum., 1964, vol. 41, pp. 308–11CrossRef
5.
6.
Zurück zum Zitat T.C. Keener, G.C. Frazie, W.T. Davis: Chem. Eng. Commun., 1985, vol. 33, pp. 93–98CrossRef T.C. Keener, G.C. Frazie, W.T. Davis: Chem. Eng. Commun., 1985, vol. 33, pp. 93–98CrossRef
7.
Zurück zum Zitat W. Hu, J.M. Smith, T. Dogu, G. Dogu: AIChE J., 1986, vol. 32, pp. 1483–90CrossRef W. Hu, J.M. Smith, T. Dogu, G. Dogu: AIChE J., 1986, vol. 32, pp. 1483–90CrossRef
8.
Zurück zum Zitat A. Romero, E. Garcia Calvo, P. Leton, M.A. Arranz: Thermochim. Acta, 1991, vol. 182, pp. 235–41CrossRef A. Romero, E. Garcia Calvo, P. Leton, M.A. Arranz: Thermochim. Acta, 1991, vol. 182, pp. 235–41CrossRef
9.
10.
Zurück zum Zitat P.K. Heda, D. Dollimore, K.S. Alexander, D. Chen, E. Law, P. Bicknell: Thermochim. Acta, 1995, vol. 255, pp. 255–72CrossRef P.K. Heda, D. Dollimore, K.S. Alexander, D. Chen, E. Law, P. Bicknell: Thermochim. Acta, 1995, vol. 255, pp. 255–72CrossRef
11.
Zurück zum Zitat B. Adnađević and B. Janković: unpublished research, 2007 B. Adnađević and B. Janković: unpublished research, 2007
12.
Zurück zum Zitat W. Weibull: J. Appl. Mech., 1951, vol. 18, pp. 293–97 W. Weibull: J. Appl. Mech., 1951, vol. 18, pp. 293–97
13.
Zurück zum Zitat H.L. Friedman: J. Polym. Sci. Part C, 1963, vol. 6, pp. 183–95 H.L. Friedman: J. Polym. Sci. Part C, 1963, vol. 6, pp. 183–95
14.
Zurück zum Zitat H.E. Kissinger: J. Res. Nat. Bur. Stand., 1956, vol. 57, pp. 217–21 H.E. Kissinger: J. Res. Nat. Bur. Stand., 1956, vol. 57, pp. 217–21
15.
17.
Zurück zum Zitat S. Vyazovkin, C.A. Wight: Thermochim. Acta, 1999, vol. 341, pp. 53–68CrossRef S. Vyazovkin, C.A. Wight: Thermochim. Acta, 1999, vol. 341, pp. 53–68CrossRef
18.
Zurück zum Zitat D. Chen, X. Gao, D. Dollimore: Thermochim. Acta, 1993, vol. 215, pp. 109–17CrossRef D. Chen, X. Gao, D. Dollimore: Thermochim. Acta, 1993, vol. 215, pp. 109–17CrossRef
19.
20.
21.
Zurück zum Zitat Lj. Kolar-Anić, S. Veljković, S. Kapor, B. Dubljević: J. Chem. Phys., 1975, vol. 63, pp. 663–68CrossRef Lj. Kolar-Anić, S. Veljković, S. Kapor, B. Dubljević: J. Chem. Phys., 1975, vol. 63, pp. 663–68CrossRef
22.
Zurück zum Zitat L. Kolar-Anić, S. Veljković: J. Chem. Phys., 1975, vol. 63, pp. 669–73CrossRef L. Kolar-Anić, S. Veljković: J. Chem. Phys., 1975, vol. 63, pp. 669–73CrossRef
23.
Zurück zum Zitat L. Kolar-Anić, V. Dondur: Z. Phys. Chemie, 1989, vol. 270, pp. 737–44 L. Kolar-Anić, V. Dondur: Z. Phys. Chemie, 1989, vol. 270, pp. 737–44
24.
Zurück zum Zitat P. Staszczuk, D. Sternik, V.V. Kutarov: J. Therm. Anal. Calorim., 2002, vol. 69, pp. 23–29CrossRef P. Staszczuk, D. Sternik, V.V. Kutarov: J. Therm. Anal. Calorim., 2002, vol. 69, pp. 23–29CrossRef
25.
26.
Zurück zum Zitat M.R. Gurvich, A.T. Dibenedetto, A. Pegoretti: J. Mater. Sci., 1997, vol. 32, pp. 3711–3716CrossRef M.R. Gurvich, A.T. Dibenedetto, A. Pegoretti: J. Mater. Sci., 1997, vol. 32, pp. 3711–3716CrossRef
29.
Zurück zum Zitat M. Abramowitz and I.A. Stegun: Handbook of Mathematical Functions with Formulas, Graphs and Mathematical Tables, 9th printing, Dover Publications, Inc., Government Printing Office, New York, NY, 1972, pp. 255–76 M. Abramowitz and I.A. Stegun: Handbook of Mathematical Functions with Formulas, Graphs and Mathematical Tables, 9th printing, Dover Publications, Inc., Government Printing Office, New York, NY, 1972, pp. 255–76
30.
31.
32.
Zurück zum Zitat S.V. Vyazovkin, V. Goryachko, A.I. Lesnikovich: Thermochim. Acta, 1992, vol. 197, pp. 41–51CrossRef S.V. Vyazovkin, V. Goryachko, A.I. Lesnikovich: Thermochim. Acta, 1992, vol. 197, pp. 41–51CrossRef
34.
35.
Zurück zum Zitat K. Miura, K. Mae, M. Shimada, H. Minami: Energy Fuels, 2001, vol. 15, pp. 629–36CrossRef K. Miura, K. Mae, M. Shimada, H. Minami: Energy Fuels, 2001, vol. 15, pp. 629–36CrossRef
36.
Zurück zum Zitat S.-M. Shih, H.Y. Sohn: Ind. Eng. Chem. Process Des. Dev., 1980, vol. 19, pp. 420–26CrossRef S.-M. Shih, H.Y. Sohn: Ind. Eng. Chem. Process Des. Dev., 1980, vol. 19, pp. 420–26CrossRef
37.
Zurück zum Zitat W.A. Johnson, R.F. Mehl: Trans. AIME, 1939, vol. 135, pp. 416–21 W.A. Johnson, R.F. Mehl: Trans. AIME, 1939, vol. 135, pp. 416–21
Metadaten
Titel
Determination of Density Distribution Functions of the Apparent Activation Energies for Nonisothermal Decomposition Process of Sodium Bicarbonate Using the Weibull Probability Function
verfasst von
Bojan Janković
Publikationsdatum
01.02.2008
Verlag
Springer US
Erschienen in
Metallurgical and Materials Transactions B / Ausgabe 1/2008
Print ISSN: 1073-5615
Elektronische ISSN: 1543-1916
DOI
https://doi.org/10.1007/s11663-007-9106-6

Weitere Artikel der Ausgabe 1/2008

Metallurgical and Materials Transactions B 1/2008 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.