Skip to main content
Erschienen in: Journal of Nanoparticle Research 3/2008

01.03.2008 | Research Paper

Determination of the anisotropy constant and saturation magnetization of magnetic nanoparticles from magnetization relaxation curves

verfasst von: Ivan Volkov, Maxim Chukharkin, Oleg Snigirev, Alexander Volkov, Saburo Tanaka, Coenrad Fourie

Erschienen in: Journal of Nanoparticle Research | Ausgabe 3/2008

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

We have developed a new method for the determination of the anisotropy constant and saturation magnetization of magnetic nanoparticles. This method deals with the approximation of magnetization relaxation curves measured upon application and further fast switching off the dc magnetizing field. The relaxation process is registered in the time interval from 6 μs to several minutes by using a scanning high-T C SQUID-microscope equipped with a specially designed electronic circuit composed of a fast solid-state switch and a low-inductance magnetizing coil. The algorithm for calculating the approximation data is based on the activation Néel–Arrhenius law and takes into account the size distribution of the nanoparticles and the angular distribution of their easy axes. The performance of the method is demonstrated on dilute (∼0.2 vol%) ensembles of near-spherical Fe3O4 nanoparticles with a mean size of 7.7 nm and a standard deviation of 45% as determined from transmission electron microscopy data.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Aharoni A (1996) Ferromagnetism. Oxford University Press, Oxford Aharoni A (1996) Ferromagnetism. Oxford University Press, Oxford
Zurück zum Zitat Bacri J, Perzynski R, Salin D, Cabuil V, Massart R (1990) Ionic ferrofluids: a crossing of chemistry and physics. J Magn Magn Mater 85:27–32CrossRef Bacri J, Perzynski R, Salin D, Cabuil V, Massart R (1990) Ionic ferrofluids: a crossing of chemistry and physics. J Magn Magn Mater 85:27–32CrossRef
Zurück zum Zitat Brown W (1963) Thermal fluctuations of a single-domain particle. Phys Rev 130:1677–1686CrossRef Brown W (1963) Thermal fluctuations of a single-domain particle. Phys Rev 130:1677–1686CrossRef
Zurück zum Zitat Caizer C (2003) Saturation magnetization of γ-Fe2O3 nanoparticles dispersed in a silica matrix. Physica B 327:27–33CrossRef Caizer C (2003) Saturation magnetization of γ-Fe2O3 nanoparticles dispersed in a silica matrix. Physica B 327:27–33CrossRef
Zurück zum Zitat Cannas C, Concas C, Falqui A, Gatteschi D, Musinu A, Piccaluga G, Sangregorio C, Spano G (2001) Superparamagnetic behavior of γ-Fe2O3 nanoparticles dispersed in a silica matrix. Phys Chem Chem Phys 3:832–838CrossRef Cannas C, Concas C, Falqui A, Gatteschi D, Musinu A, Piccaluga G, Sangregorio C, Spano G (2001) Superparamagnetic behavior of γ-Fe2O3 nanoparticles dispersed in a silica matrix. Phys Chem Chem Phys 3:832–838CrossRef
Zurück zum Zitat Chikazumi S (1964) Physics of magnetism. Wiley, New York Chikazumi S (1964) Physics of magnetism. Wiley, New York
Zurück zum Zitat Duarte EL, Itri R, Lima E, Baptista MS, Berquo TS, Goya GF (2006) Large magnetic anisotropy in ferrihydrite nanoparticles synthesized from reverse micelles. Nanotechnology 17:5549–5555CrossRef Duarte EL, Itri R, Lima E, Baptista MS, Berquo TS, Goya GF (2006) Large magnetic anisotropy in ferrihydrite nanoparticles synthesized from reverse micelles. Nanotechnology 17:5549–5555CrossRef
Zurück zum Zitat Fiorani D (ed) (2005) Surface effects in magnetic nanoparticles. Springer Fiorani D (ed) (2005) Surface effects in magnetic nanoparticles. Springer
Zurück zum Zitat Garcia-Otero J, Porto M, Rivas J, Bunde A (1999) Influence of the cubic anisotropy constants on the hysteresis loops of single-domain particles: a Monte Carlo study. J Appl Phys 85:2287–2292CrossRef Garcia-Otero J, Porto M, Rivas J, Bunde A (1999) Influence of the cubic anisotropy constants on the hysteresis loops of single-domain particles: a Monte Carlo study. J Appl Phys 85:2287–2292CrossRef
Zurück zum Zitat Held GA, Grinstein G, Doyle H, Sun Sh, Murray C (2001) Competing interactions in dispersions of superparamagnetic nanoparticles. Phys Rev B 64:012408-1–012408-4CrossRef Held GA, Grinstein G, Doyle H, Sun Sh, Murray C (2001) Competing interactions in dispersions of superparamagnetic nanoparticles. Phys Rev B 64:012408-1–012408-4CrossRef
Zurück zum Zitat Jamet M, Wernsdorfer W, Thirion C, Mailly D, Dupuis V, Mélinon P, Pérez A (2001) Magnetic anisotropy of a single cobalt nanocluster. Phys Rev Lett 86:4676–4679CrossRef Jamet M, Wernsdorfer W, Thirion C, Mailly D, Dupuis V, Mélinon P, Pérez A (2001) Magnetic anisotropy of a single cobalt nanocluster. Phys Rev Lett 86:4676–4679CrossRef
Zurück zum Zitat Kadau K, Gruner M, Entel P, Kreth M (2003) Modeling structural and magnetic phase transitions in iron-nickel nanoparticles. Phase Transit 76:355–365CrossRef Kadau K, Gruner M, Entel P, Kreth M (2003) Modeling structural and magnetic phase transitions in iron-nickel nanoparticles. Phase Transit 76:355–365CrossRef
Zurück zum Zitat Kodama R (1999) Magnetic nanoparticles. J Magn Magn Mater 200:359–372CrossRef Kodama R (1999) Magnetic nanoparticles. J Magn Magn Mater 200:359–372CrossRef
Zurück zum Zitat Lin XM, Sorensen CM, Klabunde KJ, Hajipanayis GC (1999) Control of cobalt nanoparticle size by the germ-growth method in inverse micelle system: size-dependent magnetic properties. J Mater Res 14:1542–1547CrossRef Lin XM, Sorensen CM, Klabunde KJ, Hajipanayis GC (1999) Control of cobalt nanoparticle size by the germ-growth method in inverse micelle system: size-dependent magnetic properties. J Mater Res 14:1542–1547CrossRef
Zurück zum Zitat Luis F, Petroff F, Torres JM, Garcia LM, Bartolome J, Carrey J, Vaures A (2002) Magnetic relaxation of interacting Co clusters: crossover from two- to three-dimensional lattices. Phys Rev Lett 88:217205-1–217205-4 Luis F, Petroff F, Torres JM, Garcia LM, Bartolome J, Carrey J, Vaures A (2002) Magnetic relaxation of interacting Co clusters: crossover from two- to three-dimensional lattices. Phys Rev Lett 88:217205-1–217205-4
Zurück zum Zitat McCallum RW (2005) Determination of the saturation magnetization, anisotropy field, mean field interaction, and switching field distribution for nanocrystalline hard magnets. J Magn Magn Mater 292:135–142CrossRef McCallum RW (2005) Determination of the saturation magnetization, anisotropy field, mean field interaction, and switching field distribution for nanocrystalline hard magnets. J Magn Magn Mater 292:135–142CrossRef
Zurück zum Zitat Moser A, Takano K, Margulies DT, Albrecht M, Sonobe Y, Ikeda Y, Sun Sh, Fullerton EE (2002) Magnetic recording: advancing into the future. J Phys D: Appl Phys 35:R157–R167CrossRef Moser A, Takano K, Margulies DT, Albrecht M, Sonobe Y, Ikeda Y, Sun Sh, Fullerton EE (2002) Magnetic recording: advancing into the future. J Phys D: Appl Phys 35:R157–R167CrossRef
Zurück zum Zitat Mørup S (1990) Mossbauer effect in small particles. Hyperfine Interactions 60:959–974CrossRef Mørup S (1990) Mossbauer effect in small particles. Hyperfine Interactions 60:959–974CrossRef
Zurück zum Zitat Muxworthy AR, McClelland E (2000) Review of the low-temperature magnetic properties of magnetite from a rock magnetic perspective. Geophys J Int 140:101–114CrossRef Muxworthy AR, McClelland E (2000) Review of the low-temperature magnetic properties of magnetite from a rock magnetic perspective. Geophys J Int 140:101–114CrossRef
Zurück zum Zitat Néel L (1949) Théorie du trainage magnétique. Ann Geophys 5:99 Néel L (1949) Théorie du trainage magnétique. Ann Geophys 5:99
Zurück zum Zitat Osborn JA (1945) Demagnetizing factors of the general ellipsoid. Phys Rev 67:351–357CrossRef Osborn JA (1945) Demagnetizing factors of the general ellipsoid. Phys Rev 67:351–357CrossRef
Zurück zum Zitat Pankhurst QA, Binns C, Maher M, Kechrakos D, Trohidou K (2002) Magnetic behavior of nanostructured films assembled from preformed Fe clusters embedded in Ag. Phys Rev B 66:184413-1–184413-12 Pankhurst QA, Binns C, Maher M, Kechrakos D, Trohidou K (2002) Magnetic behavior of nanostructured films assembled from preformed Fe clusters embedded in Ag. Phys Rev B 66:184413-1–184413-12
Zurück zum Zitat Pankhurst QA, Connolly J, Jones SK, Dobson J (2003) Application of magnetic nanoparticles in biomedicine. J Phys D: Appl Phys 36:R167–R181CrossRef Pankhurst QA, Connolly J, Jones SK, Dobson J (2003) Application of magnetic nanoparticles in biomedicine. J Phys D: Appl Phys 36:R167–R181CrossRef
Zurück zum Zitat Poddar P, Telem-Shafir T, Fried T, Markovich G (2002) Dipolar interactions in two- and three-dimensional magnetic nanoparticle arrays. Phys Rev B 66:060403-1–060403-4CrossRef Poddar P, Telem-Shafir T, Fried T, Markovich G (2002) Dipolar interactions in two- and three-dimensional magnetic nanoparticle arrays. Phys Rev B 66:060403-1–060403-4CrossRef
Zurück zum Zitat Si Sh, Li Ch, Wang X, Yu D, Peng Q, Li Y (2005) Magnetic monodisperse Fe3O4 nanoparticles. Cryst Growth Des 5:391–393CrossRef Si Sh, Li Ch, Wang X, Yu D, Peng Q, Li Y (2005) Magnetic monodisperse Fe3O4 nanoparticles. Cryst Growth Des 5:391–393CrossRef
Zurück zum Zitat Song T, Roshko RM, Dahlberg E (2001) Modelling the irreversible response of magnetically ordered materials: a Preisach-based approach. J Phys: Condens Matter 13:3443–3460CrossRef Song T, Roshko RM, Dahlberg E (2001) Modelling the irreversible response of magnetically ordered materials: a Preisach-based approach. J Phys: Condens Matter 13:3443–3460CrossRef
Zurück zum Zitat Stoner E, Wohlfarth E (1991) A mechanism of magnetic hysteresis in heterogeneous alloys. IEEE Trans Magn 27:3475–3518 (reprinted from (1948) Philos Trans R Soc London A240:599–642). Stoner E, Wohlfarth E (1991) A mechanism of magnetic hysteresis in heterogeneous alloys. IEEE Trans Magn 27:3475–3518 (reprinted from (1948) Philos Trans R Soc London A240:599–642).
Zurück zum Zitat Suess D, Schrefl T, Fidler J (2001) Reversal modes, thermal stability and exchange length in perpendicular recording media. IEEE Trans Magn 37:1664–1666CrossRef Suess D, Schrefl T, Fidler J (2001) Reversal modes, thermal stability and exchange length in perpendicular recording media. IEEE Trans Magn 37:1664–1666CrossRef
Zurück zum Zitat Vargas JM, Socolovsky LM, Knobel M, Zanchet D (2005) Dipolar interactions and size effects in powder samples of colloidal iron oxide nanoparticles. Nanotechnology 16: S285–S290CrossRef Vargas JM, Socolovsky LM, Knobel M, Zanchet D (2005) Dipolar interactions and size effects in powder samples of colloidal iron oxide nanoparticles. Nanotechnology 16: S285–S290CrossRef
Zurück zum Zitat Volkov I, Chukharkin M, Snigirev O, Ranchinski M (2003) YBCO submicron Josephson junctions on bicrystal substrates. IEEE Trans Appl Supercond 13:861–864CrossRef Volkov I, Chukharkin M, Snigirev O, Ranchinski M (2003) YBCO submicron Josephson junctions on bicrystal substrates. IEEE Trans Appl Supercond 13:861–864CrossRef
Zurück zum Zitat Volkov IA, Chukharkin ML, Snigirev OV, Volkov AV, Moskvina MA, Gudoshnikov SA, Kerimov AK (2005) HTS SQUID microscopy for measuring the magnetization relaxation of magnetic nanoparticles. IEEE Trans Appl Supercond 15:3874–3878CrossRef Volkov IA, Chukharkin ML, Snigirev OV, Volkov AV, Moskvina MA, Gudoshnikov SA, Kerimov AK (2005) HTS SQUID microscopy for measuring the magnetization relaxation of magnetic nanoparticles. IEEE Trans Appl Supercond 15:3874–3878CrossRef
Zurück zum Zitat Vonsovsky SV (1974) Magnetism. Wiley, New York Vonsovsky SV (1974) Magnetism. Wiley, New York
Zurück zum Zitat Weller D, Moser A (1999) Thermal effect limits in ultrahigh density magnetic recording. IEEE Trans Magn 35:4423–4439CrossRef Weller D, Moser A (1999) Thermal effect limits in ultrahigh density magnetic recording. IEEE Trans Magn 35:4423–4439CrossRef
Zurück zum Zitat Woods SI, Kirtley JR, Sun Sh, Koch RH (2001) Direct investigation of superparamagnetism in Co nanoparticle films. Phys Rev Lett 87:137205-1–137205-4CrossRef Woods SI, Kirtley JR, Sun Sh, Koch RH (2001) Direct investigation of superparamagnetism in Co nanoparticle films. Phys Rev Lett 87:137205-1–137205-4CrossRef
Zurück zum Zitat Zeng H, Li J, Liu JP, Wang ZL, Sun Sh (2002) Exchange-coupled nanocomposite magnets by nanoparticle self-assembly. Nature 420:395–398CrossRef Zeng H, Li J, Liu JP, Wang ZL, Sun Sh (2002) Exchange-coupled nanocomposite magnets by nanoparticle self-assembly. Nature 420:395–398CrossRef
Metadaten
Titel
Determination of the anisotropy constant and saturation magnetization of magnetic nanoparticles from magnetization relaxation curves
verfasst von
Ivan Volkov
Maxim Chukharkin
Oleg Snigirev
Alexander Volkov
Saburo Tanaka
Coenrad Fourie
Publikationsdatum
01.03.2008
Verlag
Springer Netherlands
Erschienen in
Journal of Nanoparticle Research / Ausgabe 3/2008
Print ISSN: 1388-0764
Elektronische ISSN: 1572-896X
DOI
https://doi.org/10.1007/s11051-007-9282-y

Weitere Artikel der Ausgabe 3/2008

Journal of Nanoparticle Research 3/2008 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.