Skip to main content
Erschienen in: Meccanica 4-5/2018

06.09.2017

Developing a semi-analytical model for thermomechanical response of SMA laminated beams, considering SMA asymmetric behavior

verfasst von: Ali Nassiri-monfared, Mostafa Baghani, Mohammad Reza Zakerzadeh, Pouya Fahimi

Erschienen in: Meccanica | Ausgabe 4-5/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this study, thermomechanical behavior of a beam reinforced with Shape Memory Alloy (SMA) elements is investigated (an elastic core with upper and bottom SMA layers). The improved Brinson constitutive model is used in order to account for the asymmetric behavior of SMA in tension and compression. Assuming a plane stress model for the beam reinforced with SMA layers, a semi-analytical formulation is proposed. This formulation has two parts: the first part consists of a linear distribution of strain along the cross section and the second part is an iterative numerical procedure to satisfy classical equilibrium equations. For the numerical procedure, bisection method is used. Moreover, the semi-analytical results are compared with a 2D Finite Element (FE) solution. The proposed model is applicable for Euler–Bernoulli beams with any material and geometric features. For example, for a composite beam including both superelastic and shape memory SMA layers the proposed model can be employed. Regarding the results, there is more than 95% agreement between the present numerical solutions and those of 2D FE method. Also, for the numeric examples discussed in this paper, it is shown that considering the asymmetry between the tension and compression behavior of SMA, leads to at least 25% change in the force–displacement plot with respect to the cases when considering symmetric behavior and also, there is 8% (of the width of the structure) shift in the location of the neutral axis from the centerline. In addition, hysteresis inner loops are investigated, using the asymmetric proposed model and compared against 2D FE solution, where results show a good agreement between two solutions.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Boyd JG, Lagoudas DC (1996) A thermodynamical constitutive model for shape memory materials. Part I. The monolithic shape memory alloy. Int J Plast 12(6):805–842CrossRefMATH Boyd JG, Lagoudas DC (1996) A thermodynamical constitutive model for shape memory materials. Part I. The monolithic shape memory alloy. Int J Plast 12(6):805–842CrossRefMATH
2.
Zurück zum Zitat Ivshin Y, Pence TJ (1994) A thermomechanical model for a one variant shape memory material. J Intell Mater Syst Struct 5(4):455–473CrossRef Ivshin Y, Pence TJ (1994) A thermomechanical model for a one variant shape memory material. J Intell Mater Syst Struct 5(4):455–473CrossRef
3.
Zurück zum Zitat Grasser E, Cozzarelli F (1994) A proposed three-dimensional constitutive model for shape memory alloy. J Intell Mater Syst Struct 5:78–89CrossRef Grasser E, Cozzarelli F (1994) A proposed three-dimensional constitutive model for shape memory alloy. J Intell Mater Syst Struct 5:78–89CrossRef
4.
Zurück zum Zitat Brocca M, Brinson LC, Bazant ZP (2002) Three-dimensional constitutive model for shape memory alloys based on microplane model. J Mech Phys Solids 50(5):1051–1077ADSCrossRefMATH Brocca M, Brinson LC, Bazant ZP (2002) Three-dimensional constitutive model for shape memory alloys based on microplane model. J Mech Phys Solids 50(5):1051–1077ADSCrossRefMATH
5.
Zurück zum Zitat Reese S, Christ D (2008) Finite deformation pseudo-elasticity of shape memory alloys - Constitutive modelling and finite element implementation. Int J Plast 24(3):455–482CrossRefMATH Reese S, Christ D (2008) Finite deformation pseudo-elasticity of shape memory alloys - Constitutive modelling and finite element implementation. Int J Plast 24(3):455–482CrossRefMATH
6.
Zurück zum Zitat Sayyaadi H, Zakerzadeh MR, Salehi H (2012) A comparative analysis of some one-dimensional shape memory alloy constitutive models based on experimental tests. Sci Iran 19(2):249–257CrossRef Sayyaadi H, Zakerzadeh MR, Salehi H (2012) A comparative analysis of some one-dimensional shape memory alloy constitutive models based on experimental tests. Sci Iran 19(2):249–257CrossRef
7.
Zurück zum Zitat Auricchio F, Reali A, Stefanelli U (2009) A macroscopic 1D model for shape memory alloys including asymmetric behaviors and transformation-dependent elastic properties. Comput Methods Appl Mech Eng 198(17–20):1631–1637ADSMathSciNetCrossRefMATH Auricchio F, Reali A, Stefanelli U (2009) A macroscopic 1D model for shape memory alloys including asymmetric behaviors and transformation-dependent elastic properties. Comput Methods Appl Mech Eng 198(17–20):1631–1637ADSMathSciNetCrossRefMATH
8.
Zurück zum Zitat Rizzoni R, Marfia S (2015) A thermodynamical formulation for the constitutive modeling of a shape memory alloy with two martensite phases. Meccanica 50(4):1121–1145MathSciNetCrossRefMATH Rizzoni R, Marfia S (2015) A thermodynamical formulation for the constitutive modeling of a shape memory alloy with two martensite phases. Meccanica 50(4):1121–1145MathSciNetCrossRefMATH
9.
Zurück zum Zitat Shariyat M, Moradi M, Samaee S (2014) Enhanced model for nonlinear dynamic analysis of rectangular composite plates with embedded SMA wires, considering the instantaneous local phase changes. Compos Struct 109:106–118CrossRef Shariyat M, Moradi M, Samaee S (2014) Enhanced model for nonlinear dynamic analysis of rectangular composite plates with embedded SMA wires, considering the instantaneous local phase changes. Compos Struct 109:106–118CrossRef
10.
Zurück zum Zitat Rogers CA, Barker DK (1990) Experimental studies of active strain energy tuning of adaptive composites. Proceedings of the 31st AJAA/ASME/ASCEIAHS/ASC structures, Structural Dynamics and Materials Conference, Washington D.C., April 1990 Rogers CA, Barker DK (1990) Experimental studies of active strain energy tuning of adaptive composites. Proceedings of the 31st AJAA/ASME/ASCEIAHS/ASC structures, Structural Dynamics and Materials Conference, Washington D.C., April 1990
11.
Zurück zum Zitat Rustighi E, Brennan M, Mace B (2005) Real-time control of a shape memory alloy adaptive tuned vibration absorber. Smart Mater Struct 14(6):1184ADSCrossRef Rustighi E, Brennan M, Mace B (2005) Real-time control of a shape memory alloy adaptive tuned vibration absorber. Smart Mater Struct 14(6):1184ADSCrossRef
12.
Zurück zum Zitat Indirli M, Castellano MG (2008) Shape memory alloy devices for the structural improvement of masonry heritage structures. Int J Archit Herit 2(2):93–119CrossRef Indirli M, Castellano MG (2008) Shape memory alloy devices for the structural improvement of masonry heritage structures. Int J Archit Herit 2(2):93–119CrossRef
13.
Zurück zum Zitat Beom-Seok J, Min-Saeng K, Ji-Soo K, Yun-Mi K, Woo-Yong L, Sung-Hoon A (2010) Fabrication of a smart air intake structure using shape memory alloy wire embedded composite. Phys Scr T139:014042ADSCrossRef Beom-Seok J, Min-Saeng K, Ji-Soo K, Yun-Mi K, Woo-Yong L, Sung-Hoon A (2010) Fabrication of a smart air intake structure using shape memory alloy wire embedded composite. Phys Scr T139:014042ADSCrossRef
14.
Zurück zum Zitat Wang X (2002) Shape memory alloy volume fraction of pre-stretched shape memory alloy wire-reinforced composites for structural damage repair. Smart Mater Struct 11(4):590ADSCrossRef Wang X (2002) Shape memory alloy volume fraction of pre-stretched shape memory alloy wire-reinforced composites for structural damage repair. Smart Mater Struct 11(4):590ADSCrossRef
15.
Zurück zum Zitat Tanaka K (1986) A thermomechanical sketch of shape memory effect: one-dimensional tensile behavior. Res Mech 18:251–263 Tanaka K (1986) A thermomechanical sketch of shape memory effect: one-dimensional tensile behavior. Res Mech 18:251–263
16.
Zurück zum Zitat Liang C, Rogers CA (1990) One-dimensional thermomechanical constitutive relations for shape memory materials. J Intell Mater Syst Struct 1(2):207–234CrossRef Liang C, Rogers CA (1990) One-dimensional thermomechanical constitutive relations for shape memory materials. J Intell Mater Syst Struct 1(2):207–234CrossRef
17.
Zurück zum Zitat Khandelwal A, Buravalla VR (2007) A correction to the Brinson’s evolution kinetics for shape memory alloys. J Intell Mater Syst Struct 19:43–46CrossRef Khandelwal A, Buravalla VR (2007) A correction to the Brinson’s evolution kinetics for shape memory alloys. J Intell Mater Syst Struct 19:43–46CrossRef
18.
Zurück zum Zitat Bekker A, Brinson L (1998) Phase diagram based description of the hysteresis behavior of shape memory alloys. Acta Mater 46(10):3649–3665CrossRef Bekker A, Brinson L (1998) Phase diagram based description of the hysteresis behavior of shape memory alloys. Acta Mater 46(10):3649–3665CrossRef
19.
Zurück zum Zitat Buravalla V, Khandelwal A (2011) Evolution kinetics in shape memory alloys under arbitrary loading: experiments and modeling. Mech Mater 43(12):807–823CrossRef Buravalla V, Khandelwal A (2011) Evolution kinetics in shape memory alloys under arbitrary loading: experiments and modeling. Mech Mater 43(12):807–823CrossRef
20.
Zurück zum Zitat Vigliotti A (2010) Finite element implementation of a multivariant shape memory alloy model. J Intell Mater Syst Struct 21:685–699CrossRef Vigliotti A (2010) Finite element implementation of a multivariant shape memory alloy model. J Intell Mater Syst Struct 21:685–699CrossRef
21.
Zurück zum Zitat Chung J-H, Heo J-S, Lee J-J (2006) Implementation strategy for the dual transformation region in the Brinson SMA constitutive model. Smart Mater Struct 16(1):N1–N5CrossRef Chung J-H, Heo J-S, Lee J-J (2006) Implementation strategy for the dual transformation region in the Brinson SMA constitutive model. Smart Mater Struct 16(1):N1–N5CrossRef
22.
Zurück zum Zitat DeCastro JA, Melcher KJ, Noebe RD, Gaydosh DJ (2007) Development of a numerical model for high-temperature shape memory alloys. Smart Mater Struct 16(6):2080ADSCrossRef DeCastro JA, Melcher KJ, Noebe RD, Gaydosh DJ (2007) Development of a numerical model for high-temperature shape memory alloys. Smart Mater Struct 16(6):2080ADSCrossRef
23.
Zurück zum Zitat Poorasadion S, Arghavani J, Naghdabadi R, Sohrabpour S (2013) An improvement on the Brinson model for shape memory alloys with application to two-dimensional beam element. J Intell Mater Syst Struct 25:1905–1920CrossRef Poorasadion S, Arghavani J, Naghdabadi R, Sohrabpour S (2013) An improvement on the Brinson model for shape memory alloys with application to two-dimensional beam element. J Intell Mater Syst Struct 25:1905–1920CrossRef
24.
Zurück zum Zitat Baragetti S (2006) A theoretical study on nonlinear bending of wires. Meccanica 41(4):443–458CrossRefMATH Baragetti S (2006) A theoretical study on nonlinear bending of wires. Meccanica 41(4):443–458CrossRefMATH
25.
Zurück zum Zitat Rejzner J, Lexcellent C, Raniecki B (2002) Pseudoelastic behaviour of shape memory alloy beams under pure bending: experiments and modelling. Int J Mech Sci 44(4):665–686CrossRefMATH Rejzner J, Lexcellent C, Raniecki B (2002) Pseudoelastic behaviour of shape memory alloy beams under pure bending: experiments and modelling. Int J Mech Sci 44(4):665–686CrossRefMATH
26.
Zurück zum Zitat Mirzaeifar R, DesRoches R, Yavari A, Gall K (2013) On superelastic bending of shape memory alloy beams. Int J Solids Struct 50(10):1664–1680CrossRef Mirzaeifar R, DesRoches R, Yavari A, Gall K (2013) On superelastic bending of shape memory alloy beams. Int J Solids Struct 50(10):1664–1680CrossRef
27.
Zurück zum Zitat Auricchio F, Morganti S, Reali A, Urbano M (2011) Theoretical and experimental study of the shape memory effect of beams in bending conditions. J Mater Eng Perform 20(4–5):712–718CrossRef Auricchio F, Morganti S, Reali A, Urbano M (2011) Theoretical and experimental study of the shape memory effect of beams in bending conditions. J Mater Eng Perform 20(4–5):712–718CrossRef
28.
Zurück zum Zitat Ostadrahimi A, Arghavani J, Poorasadion S (2015) An analytical study on the bending of prismatic SMA beams. Smart Mater Struct 24(12):125035–125050ADSCrossRef Ostadrahimi A, Arghavani J, Poorasadion S (2015) An analytical study on the bending of prismatic SMA beams. Smart Mater Struct 24(12):125035–125050ADSCrossRef
29.
Zurück zum Zitat Eshghinejad A, Elahinia M (2011) Exact solution for bending of shape memory alloy superelastic beams. In: ASME 2011 conference on smart materials, adaptive structures and intelligent systems. American Society of Mechanical Engineers, pp 345–352 Eshghinejad A, Elahinia M (2011) Exact solution for bending of shape memory alloy superelastic beams. In: ASME 2011 conference on smart materials, adaptive structures and intelligent systems. American Society of Mechanical Engineers, pp 345–352
30.
Zurück zum Zitat Asadi H, Bodaghi M, Shakeri M, Aghdam MM (2013) An analytical approach for nonlinear vibration and thermal stability of shape memory alloy hybrid laminated composite beams. Eur J Mech A Solids 42:454–468CrossRef Asadi H, Bodaghi M, Shakeri M, Aghdam MM (2013) An analytical approach for nonlinear vibration and thermal stability of shape memory alloy hybrid laminated composite beams. Eur J Mech A Solids 42:454–468CrossRef
31.
Zurück zum Zitat Lu P, Cui FS, Tan MJ (2009) A theoretical model for the bending of a laminated beam with SMA fiber embedded layer. Compos Struct 90(4):458–464CrossRef Lu P, Cui FS, Tan MJ (2009) A theoretical model for the bending of a laminated beam with SMA fiber embedded layer. Compos Struct 90(4):458–464CrossRef
32.
Zurück zum Zitat Zhou G, Lloyd P (2009) Design, manufacture and evaluation of bending behaviour of composite beams embedded with SMA wires. Compos Sci Technol 69(13):2034–2041CrossRef Zhou G, Lloyd P (2009) Design, manufacture and evaluation of bending behaviour of composite beams embedded with SMA wires. Compos Sci Technol 69(13):2034–2041CrossRef
33.
Zurück zum Zitat Zak AJ, Cartmell MP, Ostachowicz WM, Wiercigroch M (2003) One-dimensional shape memory alloy models for use with reinforced composite structures. Smart Mater Struct 12(3):338ADSCrossRef Zak AJ, Cartmell MP, Ostachowicz WM, Wiercigroch M (2003) One-dimensional shape memory alloy models for use with reinforced composite structures. Smart Mater Struct 12(3):338ADSCrossRef
34.
Zurück zum Zitat Kuo S-Y, Shiau L-C, Chen K-H (2009) Buckling analysis of shape memory alloy reinforced composite laminates. Compos Struct 90(2):188–195CrossRef Kuo S-Y, Shiau L-C, Chen K-H (2009) Buckling analysis of shape memory alloy reinforced composite laminates. Compos Struct 90(2):188–195CrossRef
35.
Zurück zum Zitat Khalili SMR, Botshekanan Dehkordi M, Carrera E (2013) A nonlinear finite element model using a unified formulation for dynamic analysis of multilayer composite plate embedded with SMA wires. Compos Struct 106:635–645CrossRef Khalili SMR, Botshekanan Dehkordi M, Carrera E (2013) A nonlinear finite element model using a unified formulation for dynamic analysis of multilayer composite plate embedded with SMA wires. Compos Struct 106:635–645CrossRef
36.
Zurück zum Zitat Khalili SMR, Botshekanan Dehkordi M, Carrera E, Shariyat M (2013) Non-linear dynamic analysis of a sandwich beam with pseudoelastic SMA hybrid composite faces based on higher order finite element theory. Compos Struct 96:243–255CrossRef Khalili SMR, Botshekanan Dehkordi M, Carrera E, Shariyat M (2013) Non-linear dynamic analysis of a sandwich beam with pseudoelastic SMA hybrid composite faces based on higher order finite element theory. Compos Struct 96:243–255CrossRef
37.
Zurück zum Zitat Khalili SMR, Botshekanan Dehkordi M, Shariyat M (2013) Modeling and transient dynamic analysis of pseudoelastic SMA hybrid composite beam. Appl Math Comput 219(18):9762–9782MathSciNetMATH Khalili SMR, Botshekanan Dehkordi M, Shariyat M (2013) Modeling and transient dynamic analysis of pseudoelastic SMA hybrid composite beam. Appl Math Comput 219(18):9762–9782MathSciNetMATH
38.
Zurück zum Zitat Pinto F, Meo M (2014) Mechanical response of shape memory alloy–based hybrid composite subjected to low-velocity impacts. J Compos Mater 49(22):2713–2722CrossRef Pinto F, Meo M (2014) Mechanical response of shape memory alloy–based hybrid composite subjected to low-velocity impacts. J Compos Mater 49(22):2713–2722CrossRef
39.
Zurück zum Zitat De la Flor S, Urbina C, Ferrando F (2011) Asymmetrical bending model for NiTi shape memory wires: numerical simulations and experimental analysis. Strain 47(3):255–267CrossRef De la Flor S, Urbina C, Ferrando F (2011) Asymmetrical bending model for NiTi shape memory wires: numerical simulations and experimental analysis. Strain 47(3):255–267CrossRef
40.
Zurück zum Zitat Gall K, Sehitoglu H, Chumlyakov YI, Kireeva IV (1999) Tension–compression asymmetry of the stress–strain response in aged single crystal and polycrystalline NiTi. Acta Mater 47(4):1203–1217CrossRef Gall K, Sehitoglu H, Chumlyakov YI, Kireeva IV (1999) Tension–compression asymmetry of the stress–strain response in aged single crystal and polycrystalline NiTi. Acta Mater 47(4):1203–1217CrossRef
41.
Zurück zum Zitat Brinson LC (1993) One-dimensional constitutive behavior of shape memory alloys: thermomechanical derivation with non-constant material functions and redefined martensite internal variable. J Intell Mater Syst Struct 4(2):229–242CrossRef Brinson LC (1993) One-dimensional constitutive behavior of shape memory alloys: thermomechanical derivation with non-constant material functions and redefined martensite internal variable. J Intell Mater Syst Struct 4(2):229–242CrossRef
Metadaten
Titel
Developing a semi-analytical model for thermomechanical response of SMA laminated beams, considering SMA asymmetric behavior
verfasst von
Ali Nassiri-monfared
Mostafa Baghani
Mohammad Reza Zakerzadeh
Pouya Fahimi
Publikationsdatum
06.09.2017
Verlag
Springer Netherlands
Erschienen in
Meccanica / Ausgabe 4-5/2018
Print ISSN: 0025-6455
Elektronische ISSN: 1572-9648
DOI
https://doi.org/10.1007/s11012-017-0756-4

Weitere Artikel der Ausgabe 4-5/2018

Meccanica 4-5/2018 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.