Skip to main content
Erschienen in: Electrical Engineering 1/2021

11.09.2020 | Original Paper

Developing the coyote optimization algorithm for extracting parameters of proton-exchange membrane fuel cell models

verfasst von: Hamdy M. Sultan, Ahmed S. Menesy, Salah Kamel, Francisco Jurado

Erschienen in: Electrical Engineering | Ausgabe 1/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Developing a precise semiempirical mathematical model based on multi-nonlinear equations for the proton-exchange membrane fuel cell (PEMFC), which guarantees suitable and accurate simulation of the electrical characteristics of typical PEMFC stacks under various operating scenarios, is the main target of this study. The unknown parameters of the PEMFC model are extracted using a novel efficient optimization technique called coyote optimization algorithm (COA). To validate the effectiveness of the proposed COA-based PEMFC model, two different cases of seven and ten unknown parameters are performed on a commercial PEMFC taken from literature. The sum of squared errors (SSE) between the experimentally measured data and the corresponding computed ones is considered as the objective function. Besides, the effectiveness of the developed algorithm is validated under different operating conditions. Moreover, the results obtained by the application of the proposed COA have been compared with other recent optimization methods reported in the literature, and very competitive results have been provided. Furthermore, parametric and nonparametric statistical analyses are presented to evaluate the accuracy and viability of the developed COA-based PEMFC model.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Corrêa JM, Farret FA, Canha LN, Simoes MG (2004) An electrochemical-based fuel-cell model suitable for electrical engineering automation approach. IEEE Trans Industr Electron 51(5):1103–1112CrossRef Corrêa JM, Farret FA, Canha LN, Simoes MG (2004) An electrochemical-based fuel-cell model suitable for electrical engineering automation approach. IEEE Trans Industr Electron 51(5):1103–1112CrossRef
2.
Zurück zum Zitat Larminie J, Dicks A, McDonald MS (2003) Fuel cell systems explained. Wiley, New YorkCrossRef Larminie J, Dicks A, McDonald MS (2003) Fuel cell systems explained. Wiley, New YorkCrossRef
3.
Zurück zum Zitat Mann RF, Amphlett JC, Hooper MA, Jensen HM, Peppley BA, Roberge PR (2000) Development and application of a generalised steady-state electrochemical model for a PEM fuel cell. J Power Sources 86(1–2):173–180CrossRef Mann RF, Amphlett JC, Hooper MA, Jensen HM, Peppley BA, Roberge PR (2000) Development and application of a generalised steady-state electrochemical model for a PEM fuel cell. J Power Sources 86(1–2):173–180CrossRef
4.
Zurück zum Zitat Motapon SN, Tremblay O, Dessaint L-A (2012) Development of a generic fuel cell model: application to a fuel cell vehicle simulation. Int J Power Electron 4(6):505–522CrossRef Motapon SN, Tremblay O, Dessaint L-A (2012) Development of a generic fuel cell model: application to a fuel cell vehicle simulation. Int J Power Electron 4(6):505–522CrossRef
5.
Zurück zum Zitat Sharaf OZ, Orhan MF (2014) An overview of fuel cell technology: fundamentals and applications. Renew Sustain Energy Rev 32:810–853CrossRef Sharaf OZ, Orhan MF (2014) An overview of fuel cell technology: fundamentals and applications. Renew Sustain Energy Rev 32:810–853CrossRef
6.
Zurück zum Zitat Ubeda D, Pinar FJ, Canizares P, Rodrigo MA, Lobato J (2012) An easy parameter estimation procedure for modeling a HT-PEMFC. Int J Hydrogen Energy 37(15):11308–11320CrossRef Ubeda D, Pinar FJ, Canizares P, Rodrigo MA, Lobato J (2012) An easy parameter estimation procedure for modeling a HT-PEMFC. Int J Hydrogen Energy 37(15):11308–11320CrossRef
7.
Zurück zum Zitat Wang Y, Chen KS, Mishler J, Cho SC, Adroher XC (2011) A review of polymer electrolyte membrane fuel cells: technology, applications, and needs on fundamental research. Appl Energy 88(4):981–1007CrossRef Wang Y, Chen KS, Mishler J, Cho SC, Adroher XC (2011) A review of polymer electrolyte membrane fuel cells: technology, applications, and needs on fundamental research. Appl Energy 88(4):981–1007CrossRef
8.
Zurück zum Zitat Abdollahzadeh M, Pascoa J, Ranjbar A, Esmaili Q (2014) Analysis of PEM (Polymer Electrolyte Membrane) fuel cell cathode two-dimensional modeling. Energy 68:478–494CrossRef Abdollahzadeh M, Pascoa J, Ranjbar A, Esmaili Q (2014) Analysis of PEM (Polymer Electrolyte Membrane) fuel cell cathode two-dimensional modeling. Energy 68:478–494CrossRef
9.
Zurück zum Zitat Mo ZJ, Zhu XJ, Wei LY, Cao GY (2006) Parameter optimization for a PEMFC model with a hybrid genetic algorithm. Int J Energy Res 30(8):585–597CrossRef Mo ZJ, Zhu XJ, Wei LY, Cao GY (2006) Parameter optimization for a PEMFC model with a hybrid genetic algorithm. Int J Energy Res 30(8):585–597CrossRef
10.
Zurück zum Zitat Ye M, Wang X, Xu Y (2009) Parameter identification for proton exchange membrane fuel cell model using particle swarm optimization. Int J Hydrogen Energy 34(2):981–989CrossRef Ye M, Wang X, Xu Y (2009) Parameter identification for proton exchange membrane fuel cell model using particle swarm optimization. Int J Hydrogen Energy 34(2):981–989CrossRef
11.
Zurück zum Zitat Outeiro M, Chibante R, Carvalho A, De Almeida A (2008) A parameter optimized model of a proton exchange membrane fuel cell including temperature effects. J Power Sources 185(2):952–960CrossRef Outeiro M, Chibante R, Carvalho A, De Almeida A (2008) A parameter optimized model of a proton exchange membrane fuel cell including temperature effects. J Power Sources 185(2):952–960CrossRef
12.
Zurück zum Zitat Outeiro M, Chibante R, Carvalho A, De Almeida A (2009) A new parameter extraction method for accurate modeling of PEM fuel cells. Int J Energy Res 33(11):978–988CrossRef Outeiro M, Chibante R, Carvalho A, De Almeida A (2009) A new parameter extraction method for accurate modeling of PEM fuel cells. Int J Energy Res 33(11):978–988CrossRef
13.
Zurück zum Zitat Askarzadeh A, Rezazadeh A (2011) Artificial immune system-based parameter extraction of proton exchange membrane fuel cell. Int J Electr Power Energy Syst 33(4):933–938CrossRef Askarzadeh A, Rezazadeh A (2011) Artificial immune system-based parameter extraction of proton exchange membrane fuel cell. Int J Electr Power Energy Syst 33(4):933–938CrossRef
14.
Zurück zum Zitat Zhang W, Wang N, Yang S (2013) Hybrid artificial bee colony algorithm for parameter estimation of proton exchange membrane fuel cell. Int J Hydrogen Energy 38(14):5796–5806CrossRef Zhang W, Wang N, Yang S (2013) Hybrid artificial bee colony algorithm for parameter estimation of proton exchange membrane fuel cell. Int J Hydrogen Energy 38(14):5796–5806CrossRef
15.
Zurück zum Zitat Sun Z, Wang N, Bi Y, Srinivasan D (2015) Parameter identification of PEMFC model based on hybrid adaptive differential evolution algorithm. Energy 90:1334–1341CrossRef Sun Z, Wang N, Bi Y, Srinivasan D (2015) Parameter identification of PEMFC model based on hybrid adaptive differential evolution algorithm. Energy 90:1334–1341CrossRef
16.
Zurück zum Zitat Dai C, Chen W, Cheng Z, Li Q, Jiang Z, Jia J (2011) Seeker optimization algorithm for global optimization: a case study on optimal modelling of proton exchange membrane fuel cell (PEMFC). Int J Electr Power Energy Syst 33(3):369–376CrossRef Dai C, Chen W, Cheng Z, Li Q, Jiang Z, Jia J (2011) Seeker optimization algorithm for global optimization: a case study on optimal modelling of proton exchange membrane fuel cell (PEMFC). Int J Electr Power Energy Syst 33(3):369–376CrossRef
17.
Zurück zum Zitat Askarzadeh A, Rezazadeh A (2011) A new artificial bee swarm algorithm for optimization of proton exchange membrane fuel cell model parameters. J Zhejiang Univ Sci C 12(8):638CrossRef Askarzadeh A, Rezazadeh A (2011) A new artificial bee swarm algorithm for optimization of proton exchange membrane fuel cell model parameters. J Zhejiang Univ Sci C 12(8):638CrossRef
18.
Zurück zum Zitat Fathy A, Rezk H (2018) Multi-verse optimizer for identifying the optimal parameters of PEMFC model. Energy 143:634–644CrossRef Fathy A, Rezk H (2018) Multi-verse optimizer for identifying the optimal parameters of PEMFC model. Energy 143:634–644CrossRef
19.
Zurück zum Zitat Menesy AS, Sultan HM, Korashy A, Banakhr FA, Ashmawy MG, Kamel S (2020) Effective parameter extraction of different polymer electrolyte membrane fuel cell stack models using a modified artificial ecosystem optimization algorithm. IEEE Access 8:31892–31909CrossRef Menesy AS, Sultan HM, Korashy A, Banakhr FA, Ashmawy MG, Kamel S (2020) Effective parameter extraction of different polymer electrolyte membrane fuel cell stack models using a modified artificial ecosystem optimization algorithm. IEEE Access 8:31892–31909CrossRef
20.
Zurück zum Zitat Sultan HM, Menesy AS, Kamel S, Jurado F (2020) Tree growth algorithm for parameter identification of proton exchange membrane fuel cell models. Int J Interact Multimedia Artif Intell 6(2):101–111 Sultan HM, Menesy AS, Kamel S, Jurado F (2020) Tree growth algorithm for parameter identification of proton exchange membrane fuel cell models. Int J Interact Multimedia Artif Intell 6(2):101–111
21.
Zurück zum Zitat Zhang L, Wang N (2013) An adaptive RNA genetic algorithm for modeling of proton exchange membrane fuel cells. Int J Hydrogen Energy 38(1):219–228CrossRef Zhang L, Wang N (2013) An adaptive RNA genetic algorithm for modeling of proton exchange membrane fuel cells. Int J Hydrogen Energy 38(1):219–228CrossRef
22.
Zurück zum Zitat Menesy AS, Sultan HM, Selim A, Ashmawy MG, Kamel S (2019) Developing and applying chaotic harris hawks optimization technique for extracting parameters of several proton exchange membrane fuel cell stacks. IEEE Access 8:1146–1159CrossRef Menesy AS, Sultan HM, Selim A, Ashmawy MG, Kamel S (2019) Developing and applying chaotic harris hawks optimization technique for extracting parameters of several proton exchange membrane fuel cell stacks. IEEE Access 8:1146–1159CrossRef
23.
Zurück zum Zitat Xu S, Wang Y, Wang Z (2019) Parameter estimation of proton exchange membrane fuel cells using eagle strategy based on JAYA algorithm and Nelder-Mead simplex method. Energy 173:457–467CrossRef Xu S, Wang Y, Wang Z (2019) Parameter estimation of proton exchange membrane fuel cells using eagle strategy based on JAYA algorithm and Nelder-Mead simplex method. Energy 173:457–467CrossRef
24.
Zurück zum Zitat Sultan HM, Menesy AS, Kamel S, Tostado-Véliz M, Jurado F (2020) Parameter identification of proton exchange membrane fuel cell stacks using bonobo optimizer. In: Presented at the IEEE International Conference on Environment and Electrical Engineering, Madrid, Spain Sultan HM, Menesy AS, Kamel S, Tostado-Véliz M, Jurado F (2020) Parameter identification of proton exchange membrane fuel cell stacks using bonobo optimizer. In: Presented at the IEEE International Conference on Environment and Electrical Engineering, Madrid, Spain
25.
Zurück zum Zitat Menesy AS, Sultan HM, Kamel S (2020) Extracting model parameters of proton exchange membrane fuel cell using equilibrium optimizer algorithm. In: 2020 International Youth Conference on Radio Electronics, Electrical and Power Engineering (REEPE) Menesy AS, Sultan HM, Kamel S (2020) Extracting model parameters of proton exchange membrane fuel cell using equilibrium optimizer algorithm. In: 2020 International Youth Conference on Radio Electronics, Electrical and Power Engineering (REEPE)
26.
Zurück zum Zitat Turgut OE, Coban MT (2016) Optimal proton exchange membrane fuel cell modelling based on hybrid Teaching Learning Based Optimization-Differential Evolution algorithm. Ain Shams Eng J 7(1):347–360CrossRef Turgut OE, Coban MT (2016) Optimal proton exchange membrane fuel cell modelling based on hybrid Teaching Learning Based Optimization-Differential Evolution algorithm. Ain Shams Eng J 7(1):347–360CrossRef
27.
Zurück zum Zitat Rao Y, Shao Z, Ahangarnejad AH, Gholamalizadeh E, Sobhani B (2019) Shark Smell Optimizer applied to identify the optimal parameters of the proton exchange membrane fuel cell model. Energy Convers Manag 182:1–8CrossRef Rao Y, Shao Z, Ahangarnejad AH, Gholamalizadeh E, Sobhani B (2019) Shark Smell Optimizer applied to identify the optimal parameters of the proton exchange membrane fuel cell model. Energy Convers Manag 182:1–8CrossRef
28.
Zurück zum Zitat Chen Y, Wang N (2019) Cuckoo search algorithm with explosion operator for modeling proton exchange membrane fuel cells. Int J Hydrogen Energy 44(5):3075–3087CrossRef Chen Y, Wang N (2019) Cuckoo search algorithm with explosion operator for modeling proton exchange membrane fuel cells. Int J Hydrogen Energy 44(5):3075–3087CrossRef
29.
Zurück zum Zitat Guarnieri M, Negro E, Di Noto V, Alotto P (2016) A selective hybrid stochastic strategy for fuel-cell multi-parameter identification. J Power Sources 332:249–264CrossRef Guarnieri M, Negro E, Di Noto V, Alotto P (2016) A selective hybrid stochastic strategy for fuel-cell multi-parameter identification. J Power Sources 332:249–264CrossRef
30.
Zurück zum Zitat Askarzadeh A, Rezazadeh A (2013) A new heuristic optimization algorithm for modeling of proton exchange membrane fuel cell: bird mating optimizer. Int J Energy Res 37(10):1196–1204CrossRef Askarzadeh A, Rezazadeh A (2013) A new heuristic optimization algorithm for modeling of proton exchange membrane fuel cell: bird mating optimizer. Int J Energy Res 37(10):1196–1204CrossRef
31.
Zurück zum Zitat El-Fergany AA (2017) Electrical characterisation of proton exchange membrane fuel cells stack using grasshopper optimiser. IET Renew Power Gener 12(1):9–17CrossRef El-Fergany AA (2017) Electrical characterisation of proton exchange membrane fuel cells stack using grasshopper optimiser. IET Renew Power Gener 12(1):9–17CrossRef
32.
Zurück zum Zitat Ali M, El-Hameed M, Farahat M (2017) Effective parameters’ identification for polymer electrolyte membrane fuel cell models using grey wolf optimizer. Renewable Energy 111:455–462CrossRef Ali M, El-Hameed M, Farahat M (2017) Effective parameters’ identification for polymer electrolyte membrane fuel cell models using grey wolf optimizer. Renewable Energy 111:455–462CrossRef
33.
34.
Zurück zum Zitat Mirjalili S (2016) Dragonfly algorithm: a new meta-heuristic optimization technique for solving single-objective, discrete, and multi-objective problems. Neural Comput Appl 27(4):1053–1073MathSciNetCrossRef Mirjalili S (2016) Dragonfly algorithm: a new meta-heuristic optimization technique for solving single-objective, discrete, and multi-objective problems. Neural Comput Appl 27(4):1053–1073MathSciNetCrossRef
35.
Zurück zum Zitat Sun J, Feng B, Xu W (2004) Particle swarm optimization with particles having quantum behavior. In: Proceedings of the 2004 congress on evolutionary computation (IEEE Cat. No. 04TH8753), vol 1, pp 325–331: IEEE Sun J, Feng B, Xu W (2004) Particle swarm optimization with particles having quantum behavior. In: Proceedings of the 2004 congress on evolutionary computation (IEEE Cat. No. 04TH8753), vol 1, pp 325–331: IEEE
36.
Zurück zum Zitat Yadav P, Kumar R, Panda SK, Chang C (2012) An intelligent tuned harmony search algorithm for optimisation. Inf Sci 196:47–72CrossRef Yadav P, Kumar R, Panda SK, Chang C (2012) An intelligent tuned harmony search algorithm for optimisation. Inf Sci 196:47–72CrossRef
37.
Zurück zum Zitat Yang X-S, Deb S (2009) Cuckoo search via Lévy flights. In: 2009 World congress on nature & biologically inspired computing (NaBIC), pp 210–214: IEEE Yang X-S, Deb S (2009) Cuckoo search via Lévy flights. In: 2009 World congress on nature & biologically inspired computing (NaBIC), pp 210–214: IEEE
38.
Zurück zum Zitat Civicioglu P (2013) Artificial cooperative search algorithm for numerical optimization problems. Inf Sci 229:58–76CrossRef Civicioglu P (2013) Artificial cooperative search algorithm for numerical optimization problems. Inf Sci 229:58–76CrossRef
39.
Zurück zum Zitat Amphlett JC, Baumert RM, Mann RF, Peppley BA, Roberge PR, Harris TJ (1995) Performance modeling of the Ballard Mark IV solid polymer electrolyte fuel cell I. Mechanistic model development. J Electrochem Soc 142(1):1–8CrossRef Amphlett JC, Baumert RM, Mann RF, Peppley BA, Roberge PR, Harris TJ (1995) Performance modeling of the Ballard Mark IV solid polymer electrolyte fuel cell I. Mechanistic model development. J Electrochem Soc 142(1):1–8CrossRef
40.
Zurück zum Zitat Aouali FZ, Becherif M, Ramadan HS, Emziane M, Khellaf A, Mohammedi K (2017) Analytical modelling and experimental validation of proton exchange membrane electrolyser for hydrogen production. Int J Hydrogen Energy 42(2):1366–1374CrossRef Aouali FZ, Becherif M, Ramadan HS, Emziane M, Khellaf A, Mohammedi K (2017) Analytical modelling and experimental validation of proton exchange membrane electrolyser for hydrogen production. Int J Hydrogen Energy 42(2):1366–1374CrossRef
41.
Zurück zum Zitat Panos C, Kouramas K, Georgiadis M, Pistikopoulos E (2012) Modelling and explicit model predictive control for PEM fuel cell systems. Chem Eng Sci 67(1):15–25CrossRef Panos C, Kouramas K, Georgiadis M, Pistikopoulos E (2012) Modelling and explicit model predictive control for PEM fuel cell systems. Chem Eng Sci 67(1):15–25CrossRef
42.
Zurück zum Zitat Pierezan J, Coelho LDS (2018) Coyote optimization algorithm: a new metaheuristic for global optimization problems. In 2018 IEEE Congress on Evolutionary Computation (CEC), pp 1–8: IEEE Pierezan J, Coelho LDS (2018) Coyote optimization algorithm: a new metaheuristic for global optimization problems. In 2018 IEEE Congress on Evolutionary Computation (CEC), pp 1–8: IEEE
43.
Zurück zum Zitat Güvenç U, Kaymaz E (2019) Economic dispatch integrated wind power using coyote optimization algorithm. In: 2019 7th International Istanbul Smart Grids and Cities Congress and Fair (ICSG), pp 179–183: IEEE Güvenç U, Kaymaz E (2019) Economic dispatch integrated wind power using coyote optimization algorithm. In: 2019 7th International Istanbul Smart Grids and Cities Congress and Fair (ICSG), pp 179–183: IEEE
Metadaten
Titel
Developing the coyote optimization algorithm for extracting parameters of proton-exchange membrane fuel cell models
verfasst von
Hamdy M. Sultan
Ahmed S. Menesy
Salah Kamel
Francisco Jurado
Publikationsdatum
11.09.2020
Verlag
Springer Berlin Heidelberg
Erschienen in
Electrical Engineering / Ausgabe 1/2021
Print ISSN: 0948-7921
Elektronische ISSN: 1432-0487
DOI
https://doi.org/10.1007/s00202-020-01103-6

Weitere Artikel der Ausgabe 1/2021

Electrical Engineering 1/2021 Zur Ausgabe

Neuer Inhalt