Skip to main content

2019 | OriginalPaper | Buchkapitel

12. Development of Photonic Crystal Fiber-Based Gas/Chemical Sensors

verfasst von : Ahmmed A. Rifat, Kawsar Ahmed, Sayed Asaduzzaman, Bikash Kumar Paul, Rajib Ahmed

Erschienen in: Computational Photonic Sensors

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The development of highly sensitive and miniaturized sensors that capable of real-time analytes detection is highly desirable. Nowadays, toxic or colorless gas detection, air pollution monitoring, harmful chemical, pressure, strain, humidity, and temperature sensors based on photonic crystal fiber (PCF) are increasing rapidly due to its compact structure, fast response, and efficient light-controlling capabilities. The propagating light through the PCF can be controlled by varying the structural parameters and core–cladding materials; as a result, evanescent field can be enhanced significantly which is the main component of the PCF-based gas/chemical sensors. The aim of this chapter is to (1) describe the principle operation of PCF-based gas/chemical sensors, (2) discuss the important PCF properties for optical sensors, (3) extensively discuss the different types of microstructured optical fiber-based gas/chemical sensors, (4) study the effects of different core–cladding shapes, and fiber background materials on sensing performance, and (5) highlight the main challenges of PCF-based gas/chemical sensors and possible solutions.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat T.N. Do, Y. Visell, Stretchable, twisted conductive microtubules for wearable computing, robotics, electronics, and healthcare. Sci. Rep. 7 (2017) T.N. Do, Y. Visell, Stretchable, twisted conductive microtubules for wearable computing, robotics, electronics, and healthcare. Sci. Rep. 7 (2017)
2.
Zurück zum Zitat D. Ahuja, D. Parande, Optical sensors and their applications. J. Sci. Res. Rev. 1, 060–068 (2012)CrossRef D. Ahuja, D. Parande, Optical sensors and their applications. J. Sci. Res. Rev. 1, 060–068 (2012)CrossRef
3.
Zurück zum Zitat J.C. Yeo, C.T. Lim, Emerging flexible and wearable physical sensing platforms for healthcare and biomedical applications. Microsyst. Nanoeng. 2 (2016) J.C. Yeo, C.T. Lim, Emerging flexible and wearable physical sensing platforms for healthcare and biomedical applications. Microsyst. Nanoeng. 2 (2016)
4.
Zurück zum Zitat S.A. Morin, R.F. Shepherd, S.W. Kwok, A.A. Stokes, A. Nemiroski, G.M. Whitesides, Camouflage and display for soft machines. Science 337, 828–832 (2012)CrossRef S.A. Morin, R.F. Shepherd, S.W. Kwok, A.A. Stokes, A. Nemiroski, G.M. Whitesides, Camouflage and display for soft machines. Science 337, 828–832 (2012)CrossRef
5.
Zurück zum Zitat S. Gong, W. Schwalb, Y. Wang, Y. Chen, Y. Tang, J. Si et al., A wearable and highly sensitive pressure sensor with ultrathin gold nanowires. Nat. Commun. 5, 3132 (2014)CrossRef S. Gong, W. Schwalb, Y. Wang, Y. Chen, Y. Tang, J. Si et al., A wearable and highly sensitive pressure sensor with ultrathin gold nanowires. Nat. Commun. 5, 3132 (2014)CrossRef
6.
Zurück zum Zitat S. Xu, Y. Zhang, L. Jia, K.E. Mathewson, K.-I. Jang, J. Kim et al., Soft microfluidic assemblies of sensors, circuits, and radios for the skin. Science 344, 70–74 (2014)CrossRef S. Xu, Y. Zhang, L. Jia, K.E. Mathewson, K.-I. Jang, J. Kim et al., Soft microfluidic assemblies of sensors, circuits, and radios for the skin. Science 344, 70–74 (2014)CrossRef
7.
Zurück zum Zitat M. Kaltenbrunner, T. Sekitani, J. Reeder, T. Yokota, K. Kuribara, T. Tokuhara et al., An ultra-lightweight design for imperceptible plastic electronics. Nature 499, 458 (2013)CrossRef M. Kaltenbrunner, T. Sekitani, J. Reeder, T. Yokota, K. Kuribara, T. Tokuhara et al., An ultra-lightweight design for imperceptible plastic electronics. Nature 499, 458 (2013)CrossRef
8.
Zurück zum Zitat I.E. Araci, B. Su, S.R. Quake, Y. Mandel, An implantable microfluidic device for self-monitoring of intraocular pressure. Nat. Med. 20, 1074–1078 (2014)CrossRef I.E. Araci, B. Su, S.R. Quake, Y. Mandel, An implantable microfluidic device for self-monitoring of intraocular pressure. Nat. Med. 20, 1074–1078 (2014)CrossRef
9.
Zurück zum Zitat W. Ding, Y. Jiang, R. Gao, Y. Liu, High-temperature fiber-optic Fabry-Perot interferometric sensors. Rev. Sci. Instrum. 86, 055001 (2015)CrossRef W. Ding, Y. Jiang, R. Gao, Y. Liu, High-temperature fiber-optic Fabry-Perot interferometric sensors. Rev. Sci. Instrum. 86, 055001 (2015)CrossRef
10.
Zurück zum Zitat S. Liu, K. Yang, Y. Wang, J. Qu, C. Liao, J. He et al., High-sensitivity strain sensor based on in-fiber rectangular air bubble. Sci. Rep. 5, 7624 (2015)CrossRef S. Liu, K. Yang, Y. Wang, J. Qu, C. Liao, J. He et al., High-sensitivity strain sensor based on in-fiber rectangular air bubble. Sci. Rep. 5, 7624 (2015)CrossRef
11.
Zurück zum Zitat Y. Liu, D. Wang, W. Chen, Crescent shaped Fabry-Perot fiber cavity for ultra-sensitive strain measurement. Sci. Rep. 6 (2016) Y. Liu, D. Wang, W. Chen, Crescent shaped Fabry-Perot fiber cavity for ultra-sensitive strain measurement. Sci. Rep. 6 (2016)
12.
Zurück zum Zitat S. Asaduzzaman, B.K. Paul, K. Ahmed, Enhancement of sensitivity and birefringence of a gas sensor on micro-core based photonic crystal fiber, in 2016 3rd International Conference on Electrical Engineering and Information Communication Technology (ICEEICT) (2016), pp. 1–4 S. Asaduzzaman, B.K. Paul, K. Ahmed, Enhancement of sensitivity and birefringence of a gas sensor on micro-core based photonic crystal fiber, in 2016 3rd International Conference on Electrical Engineering and Information Communication Technology (ICEEICT) (2016), pp. 1–4
13.
Zurück zum Zitat N.L. Andrews, R. Ross, D. Munzke, C. van Hoorn, A. Brzezinski, J.A. Barnes et al., In-fiber Mach-Zehnder interferometer for gas refractive index measurements based on a hollow-core photonic crystal fiber. Opt. Express 24, 14086–14099 (2016)CrossRef N.L. Andrews, R. Ross, D. Munzke, C. van Hoorn, A. Brzezinski, J.A. Barnes et al., In-fiber Mach-Zehnder interferometer for gas refractive index measurements based on a hollow-core photonic crystal fiber. Opt. Express 24, 14086–14099 (2016)CrossRef
14.
Zurück zum Zitat X. Feng, W. Feng, C. Tao, D. Deng, X. Qin, R. Chen, Hydrogen sulfide gas sensor based on graphene-coated tapered photonic crystal fiber interferometer. Sens. Actuators B Chem. 247, 540–545 (2017)CrossRef X. Feng, W. Feng, C. Tao, D. Deng, X. Qin, R. Chen, Hydrogen sulfide gas sensor based on graphene-coated tapered photonic crystal fiber interferometer. Sens. Actuators B Chem. 247, 540–545 (2017)CrossRef
15.
Zurück zum Zitat Y. Zhao, Z.-Q. Deng, J. Li, Photonic crystal fiber based surface plasmon resonance chemical sensors. Sens. Actuators B Chem. 202, 557–567 (2014)CrossRef Y. Zhao, Z.-Q. Deng, J. Li, Photonic crystal fiber based surface plasmon resonance chemical sensors. Sens. Actuators B Chem. 202, 557–567 (2014)CrossRef
16.
Zurück zum Zitat T.A. Birks, J.C. Knight, P.S.J. Russell, Endlessly single-mode photonic crystal fiber. Opt. Lett. 22, 961–963 (1997)CrossRef T.A. Birks, J.C. Knight, P.S.J. Russell, Endlessly single-mode photonic crystal fiber. Opt. Lett. 22, 961–963 (1997)CrossRef
17.
Zurück zum Zitat R. Cregan, B. Mangan, J. Knight, T. Birks, P.S.J. Russell, P. Roberts et al., Single-mode photonic band gap guidance of light in air. Science 285, 1537–1539 (1999)CrossRef R. Cregan, B. Mangan, J. Knight, T. Birks, P.S.J. Russell, P. Roberts et al., Single-mode photonic band gap guidance of light in air. Science 285, 1537–1539 (1999)CrossRef
18.
Zurück zum Zitat M. Arjmand, R. Talebzadeh, Optical filter based on photonic crystal resonant cavity. Optoelectron. Adv. Mater.-Rapid Commun. 9, 32–35 (2015) M. Arjmand, R. Talebzadeh, Optical filter based on photonic crystal resonant cavity. Optoelectron. Adv. Mater.-Rapid Commun. 9, 32–35 (2015)
19.
Zurück zum Zitat K. Fasihi, High-contrast all-optical controllable switching and routing in nonlinear photonic crystals. J. Lightwave Technol. 32, 3126–3131 (2014)CrossRef K. Fasihi, High-contrast all-optical controllable switching and routing in nonlinear photonic crystals. J. Lightwave Technol. 32, 3126–3131 (2014)CrossRef
20.
Zurück zum Zitat K. Cui, Q. Zhao, X. Feng, Y. Huang, Y. Li, D. Wang et al., Thermo-optic switch based on transmission-dip shifting in a double-slot photonic crystal waveguide. Appl. Phys. Lett. 100, 201102 (2012)CrossRef K. Cui, Q. Zhao, X. Feng, Y. Huang, Y. Li, D. Wang et al., Thermo-optic switch based on transmission-dip shifting in a double-slot photonic crystal waveguide. Appl. Phys. Lett. 100, 201102 (2012)CrossRef
21.
Zurück zum Zitat J.-M. Brosi, C. Koos, L.C. Andreani, M. Waldow, J. Leuthold, W. Freude, High-speed low-voltage electro-optic modulator with a polymer-infiltrated silicon photonic crystal waveguide. Opt. Express 16, 4177–4191 (2008)CrossRef J.-M. Brosi, C. Koos, L.C. Andreani, M. Waldow, J. Leuthold, W. Freude, High-speed low-voltage electro-optic modulator with a polymer-infiltrated silicon photonic crystal waveguide. Opt. Express 16, 4177–4191 (2008)CrossRef
22.
Zurück zum Zitat Y. Gao, R.-J. Shiue, X. Gan, L. Li, C. Peng, I. Meric et al., High-speed electro-optic modulator integrated with graphene-boron nitride heterostructure and photonic crystal nanocavity. Nano Lett. 15, 2001–2005 (2015)CrossRef Y. Gao, R.-J. Shiue, X. Gan, L. Li, C. Peng, I. Meric et al., High-speed electro-optic modulator integrated with graphene-boron nitride heterostructure and photonic crystal nanocavity. Nano Lett. 15, 2001–2005 (2015)CrossRef
23.
Zurück zum Zitat H. Xuan, J. Ma, W. Jin, W. Jin, Polarization converters in highly birefringent microfibers. Opt. Express 22, 3648–3660 (2014)CrossRef H. Xuan, J. Ma, W. Jin, W. Jin, Polarization converters in highly birefringent microfibers. Opt. Express 22, 3648–3660 (2014)CrossRef
24.
Zurück zum Zitat Y.-H. Chang, Y.-Y. Jhu, C.-J. Wu, Temperature dependence of defect mode in a defective photonic crystal. Opt. Commun. 285, 1501–1504 (2012)CrossRef Y.-H. Chang, Y.-Y. Jhu, C.-J. Wu, Temperature dependence of defect mode in a defective photonic crystal. Opt. Commun. 285, 1501–1504 (2012)CrossRef
25.
Zurück zum Zitat Y. Liu, H. Salemink, All-optical on-chip sensor for high refractive index sensing in photonic crystals. EPL (Europhys. Lett.) 107, 34008 (2014)CrossRef Y. Liu, H. Salemink, All-optical on-chip sensor for high refractive index sensing in photonic crystals. EPL (Europhys. Lett.) 107, 34008 (2014)CrossRef
26.
Zurück zum Zitat A.A. Rifat, R. Ahmed, A.K. Yetisen, H. Butt, A. Sabouri, G.A. Mahdiraji et al., Photonic crystal fiber based plasmonic sensors. Sens. Actuators B Chem. 243, 311–325 (2017)CrossRef A.A. Rifat, R. Ahmed, A.K. Yetisen, H. Butt, A. Sabouri, G.A. Mahdiraji et al., Photonic crystal fiber based plasmonic sensors. Sens. Actuators B Chem. 243, 311–325 (2017)CrossRef
27.
Zurück zum Zitat P. Hu, X. Dong, W.C. Wong, L.H. Chen, K. Ni, C.C. Chan, Photonic crystal fiber interferometric pH sensor based on polyvinyl alcohol/polyacrylic acid hydrogel coating. Appl. Opt. 54, 2647–2652 (2015)CrossRef P. Hu, X. Dong, W.C. Wong, L.H. Chen, K. Ni, C.C. Chan, Photonic crystal fiber interferometric pH sensor based on polyvinyl alcohol/polyacrylic acid hydrogel coating. Appl. Opt. 54, 2647–2652 (2015)CrossRef
28.
Zurück zum Zitat A.A. Rifat, M.R. Hasan, R. Ahmed, H. Butt, Photonic crystal fiber-based plasmonic biosensor with external sensing approach. J. Nanophotonics 12, 012503 (2017)CrossRef A.A. Rifat, M.R. Hasan, R. Ahmed, H. Butt, Photonic crystal fiber-based plasmonic biosensor with external sensing approach. J. Nanophotonics 12, 012503 (2017)CrossRef
29.
Zurück zum Zitat M. Pushkarsky, M. Webber, O. Baghdassarian, L. Narasimhan, C.K.N. Patel, Laser-based photoacoustic ammonia sensors for industrial applications. Appl. Phys. B Lasers Opt. 75, 391–396 (2002)CrossRef M. Pushkarsky, M. Webber, O. Baghdassarian, L. Narasimhan, C.K.N. Patel, Laser-based photoacoustic ammonia sensors for industrial applications. Appl. Phys. B Lasers Opt. 75, 391–396 (2002)CrossRef
30.
Zurück zum Zitat G. Whitenett, G. Stewart, K. Atherton, B. Culshaw, W. Johnstone, Optical fibre instrumentation for environmental monitoring applications. J. Opt. A Pure Appl. Opt. 5, S140 (2003)CrossRef G. Whitenett, G. Stewart, K. Atherton, B. Culshaw, W. Johnstone, Optical fibre instrumentation for environmental monitoring applications. J. Opt. A Pure Appl. Opt. 5, S140 (2003)CrossRef
31.
Zurück zum Zitat J.P. Carvalho, H. Lehmann, H. Bartelt, F. Magalhães, R. Amezcua-Correa, J.L. Santos, et al., Remote system for detection of low-levels of methane based on photonic crystal fibres and wavelength modulation spectroscopy. J. Sens. 2009 (2009) J.P. Carvalho, H. Lehmann, H. Bartelt, F. Magalhães, R. Amezcua-Correa, J.L. Santos, et al., Remote system for detection of low-levels of methane based on photonic crystal fibres and wavelength modulation spectroscopy. J. Sens. 2009 (2009)
32.
Zurück zum Zitat R.A. Aoni, R. Ahmed, M.M. Alam, and S. Razzak, Optimum design of a nearly zero ultra-flattened dispersion with lower confinement loss photonic crystal fibers for communication systems. Int. J. Sci. Eng. Res. 4 (2013) R.A. Aoni, R. Ahmed, M.M. Alam, and S. Razzak, Optimum design of a nearly zero ultra-flattened dispersion with lower confinement loss photonic crystal fibers for communication systems. Int. J. Sci. Eng. Res. 4 (2013)
33.
Zurück zum Zitat M.S. Habib, M.S. Habib, S.A. Razzak, M.A. Hossain, Proposal for highly birefringent broadband dispersion compensating octagonal photonic crystal fiber. Opt. Fiber Technol. 19, 461–467 (2013)CrossRef M.S. Habib, M.S. Habib, S.A. Razzak, M.A. Hossain, Proposal for highly birefringent broadband dispersion compensating octagonal photonic crystal fiber. Opt. Fiber Technol. 19, 461–467 (2013)CrossRef
34.
Zurück zum Zitat S.A. Razzak, M.A.G. Khan, F. Begum, S. Kaijage, Guiding properties of a decagonal photonic crystal fiber. J. Microwaves Optoelectron. Electromagn. Appl. (JMOe) 6, 44–49 (2007) S.A. Razzak, M.A.G. Khan, F. Begum, S. Kaijage, Guiding properties of a decagonal photonic crystal fiber. J. Microwaves Optoelectron. Electromagn. Appl. (JMOe) 6, 44–49 (2007)
35.
Zurück zum Zitat R. Ahmmed, R. Ahmed, S.A. Razzak, Design of large negative dispersion and modal analysis for hexagonal, square, FCC and BCC photonic crystal fibers, in 2013 International Conference on Informatics, Electronics & Vision (ICIEV) (2013), pp. 1–6. R. Ahmmed, R. Ahmed, S.A. Razzak, Design of large negative dispersion and modal analysis for hexagonal, square, FCC and BCC photonic crystal fibers, in 2013 International Conference on Informatics, Electronics & Vision (ICIEV) (2013), pp. 1–6.
36.
Zurück zum Zitat Y. Hou, F. Fan, Z.-W. Jiang, X.-H. Wang, S.-J. Chang, Highly birefringent polymer terahertz fiber with honeycomb cladding. Opt. Int. J. Light Electron Opt. 124, 3095–3098 (2013)CrossRef Y. Hou, F. Fan, Z.-W. Jiang, X.-H. Wang, S.-J. Chang, Highly birefringent polymer terahertz fiber with honeycomb cladding. Opt. Int. J. Light Electron Opt. 124, 3095–3098 (2013)CrossRef
37.
Zurück zum Zitat R. Hao, Z. Li, G. Sun, L. Niu, Y. Sun, Analysis on photonic crystal fibers with circular air holes in elliptical configuration. Opt. Fiber Technol. 19, 363–368 (2013)CrossRef R. Hao, Z. Li, G. Sun, L. Niu, Y. Sun, Analysis on photonic crystal fibers with circular air holes in elliptical configuration. Opt. Fiber Technol. 19, 363–368 (2013)CrossRef
38.
Zurück zum Zitat M.R. Hasan, S. Akter, T. Khatun, A.A. Rifat, M.S. Anower, Dual-hole unit-based kagome lattice microstructure fiber for low-loss and highly birefringent terahertz guidance. Opt. Eng. 56, 043108–043108 (2017)CrossRef M.R. Hasan, S. Akter, T. Khatun, A.A. Rifat, M.S. Anower, Dual-hole unit-based kagome lattice microstructure fiber for low-loss and highly birefringent terahertz guidance. Opt. Eng. 56, 043108–043108 (2017)CrossRef
40.
Zurück zum Zitat E. Udd, Fiber optic sensors based on the Sagnac interferometer and passive ring resonator. Fiber opt. Sens. Introduc.Eng. Sci. (1991) E. Udd, Fiber optic sensors based on the Sagnac interferometer and passive ring resonator. Fiber opt. Sens. Introduc.Eng. Sci. (1991)
41.
Zurück zum Zitat P. Sharan, S. Bharadwaj, F.D. Gudagunti, P. Deshmukh, Design and modelling of photonic sensor for cancer cell detection, in 2014 International Conference on the IMpact of E-Technology on US (IMPETUS) (2014), pp. 20–24. P. Sharan, S. Bharadwaj, F.D. Gudagunti, P. Deshmukh, Design and modelling of photonic sensor for cancer cell detection, in 2014 International Conference on the IMpact of E-Technology on US (IMPETUS) (2014), pp. 20–24.
42.
Zurück zum Zitat J. Park, S. Lee, S. Kim, K. Oh, Enhancement of chemical sensing capability in a photonic crystal fiber with a hollow high index ring defect at the center. Opt. Express 19, 1921–1929 (2011)CrossRef J. Park, S. Lee, S. Kim, K. Oh, Enhancement of chemical sensing capability in a photonic crystal fiber with a hollow high index ring defect at the center. Opt. Express 19, 1921–1929 (2011)CrossRef
43.
Zurück zum Zitat S. Olyaee, A. Naraghi, V. Ahmadi, High sensitivity evanescent-field gas sensor based on modified photonic crystal fiber for gas condensate and air pollution monitoring. Opt. Int. J. Light Electron Opt. 125, 596–600 (2014)CrossRef S. Olyaee, A. Naraghi, V. Ahmadi, High sensitivity evanescent-field gas sensor based on modified photonic crystal fiber for gas condensate and air pollution monitoring. Opt. Int. J. Light Electron Opt. 125, 596–600 (2014)CrossRef
44.
Zurück zum Zitat H. Ademgil, Highly sensitive octagonal photonic crystal fiber based sensor. Opt. Int. J. Light Electron Opt. 125, 6274–6278 (2014)CrossRef H. Ademgil, Highly sensitive octagonal photonic crystal fiber based sensor. Opt. Int. J. Light Electron Opt. 125, 6274–6278 (2014)CrossRef
45.
Zurück zum Zitat W. Jin, H. Ho, Y. Cao, J. Ju, L. Qi, Gas detection with micro-and nano-engineered optical fibers. Opt. Fiber Technol. 19, 741–759 (2013)CrossRef W. Jin, H. Ho, Y. Cao, J. Ju, L. Qi, Gas detection with micro-and nano-engineered optical fibers. Opt. Fiber Technol. 19, 741–759 (2013)CrossRef
46.
Zurück zum Zitat E. Austin, A. van Brakel, M.N. Petrovich, D.J. Richardson, Fibre optical sensor for C 2 H 2 gas using gas-filled photonic bandgap fibre reference cell. Sens. Actuators B Chem. 139, 30–34 (2009)CrossRef E. Austin, A. van Brakel, M.N. Petrovich, D.J. Richardson, Fibre optical sensor for C 2 H 2 gas using gas-filled photonic bandgap fibre reference cell. Sens. Actuators B Chem. 139, 30–34 (2009)CrossRef
47.
Zurück zum Zitat S. Asaduzzaman, K. Ahmed, Proposal of a gas sensor with high sensitivity, birefringence and nonlinearity for air pollution monitoring. Sens. Bio-Sens. Res. 10, 20–26 (2016)CrossRef S. Asaduzzaman, K. Ahmed, Proposal of a gas sensor with high sensitivity, birefringence and nonlinearity for air pollution monitoring. Sens. Bio-Sens. Res. 10, 20–26 (2016)CrossRef
48.
Zurück zum Zitat K. Ahmed, M. Morshed, Design and numerical analysis of microstructured-core octagonal photonic crystal fiber for sensing applications. Sens. Bio-Sens. Res. 7, 1–6 (2016)CrossRef K. Ahmed, M. Morshed, Design and numerical analysis of microstructured-core octagonal photonic crystal fiber for sensing applications. Sens. Bio-Sens. Res. 7, 1–6 (2016)CrossRef
49.
Zurück zum Zitat S. Asaduzzaman, K. Ahmed, T. Bhuiyan, T. Farah, Hybrid photonic crystal fiber in chemical sensing. SpringerPlus 5, 748 (2016)CrossRef S. Asaduzzaman, K. Ahmed, T. Bhuiyan, T. Farah, Hybrid photonic crystal fiber in chemical sensing. SpringerPlus 5, 748 (2016)CrossRef
50.
Zurück zum Zitat Q. Liu, S. Li, H. Chen, Z. Fan, J. Li, Photonic crystal fiber temperature sensor based on coupling between liquid-core mode and defect mode. IEEE Photonics J. 7, 1–9 (2015) Q. Liu, S. Li, H. Chen, Z. Fan, J. Li, Photonic crystal fiber temperature sensor based on coupling between liquid-core mode and defect mode. IEEE Photonics J. 7, 1–9 (2015)
51.
Zurück zum Zitat Y. Lu, M. Wang, C. Hao, Z. Zhao, J. Yao, Temperature sensing using photonic crystal fiber filled with silver nanowires and liquid. IEEE Photonics J. 6, 1–7 (2014) Y. Lu, M. Wang, C. Hao, Z. Zhao, J. Yao, Temperature sensing using photonic crystal fiber filled with silver nanowires and liquid. IEEE Photonics J. 6, 1–7 (2014)
52.
Zurück zum Zitat Y. Al-Qazwini, A. Noor, Z. Al-Qazwini, M.H. Yaacob, S. Harun, M. Mahdi, Refractive index sensor based on SPR in symmetrically etched plastic optical fibers. Sens. Actuators A 246, 163–169 (2016)CrossRef Y. Al-Qazwini, A. Noor, Z. Al-Qazwini, M.H. Yaacob, S. Harun, M. Mahdi, Refractive index sensor based on SPR in symmetrically etched plastic optical fibers. Sens. Actuators A 246, 163–169 (2016)CrossRef
53.
Zurück zum Zitat T. Takeo, H. Hattori, Optical fiber sensor for measuring refractive index. Jpn. J. Appl. Phys. 21, 1509 (1982)CrossRef T. Takeo, H. Hattori, Optical fiber sensor for measuring refractive index. Jpn. J. Appl. Phys. 21, 1509 (1982)CrossRef
54.
Zurück zum Zitat K. Cooper, J. Elster, M. Jones, R. Kelly, Optical fiber-based corrosion sensor systems for health monitoring of aging aircraft, in 2001 IEEE Systems Readiness Technology Conference on AUTOTESTCON Proceedings (2001), pp. 847–856. K. Cooper, J. Elster, M. Jones, R. Kelly, Optical fiber-based corrosion sensor systems for health monitoring of aging aircraft, in 2001 IEEE Systems Readiness Technology Conference on AUTOTESTCON Proceedings (2001), pp. 847–856.
55.
Zurück zum Zitat K.T. Wan, C.K. Leung, Durability tests of a fiber optic corrosion sensor. Sensors 12, 3656–3668 (2012)CrossRef K.T. Wan, C.K. Leung, Durability tests of a fiber optic corrosion sensor. Sensors 12, 3656–3668 (2012)CrossRef
56.
Zurück zum Zitat L. Alwis, T. Sun, K. Grattan, Optical fibre-based sensor technology for humidity and moisture measurement: review of recent progress. Measurement 46, 4052–4074 (2013)CrossRef L. Alwis, T. Sun, K. Grattan, Optical fibre-based sensor technology for humidity and moisture measurement: review of recent progress. Measurement 46, 4052–4074 (2013)CrossRef
57.
Zurück zum Zitat C. Bariain, I.R. Matı́as, F.J. Arregui, M. López-Amo, Optical fiber humidity sensor based on a tapered fiber coated with agarose gel. Sens. Actuators B Chem. 69, 127–131 (2000)CrossRef C. Bariain, I.R. Matı́as, F.J. Arregui, M. López-Amo, Optical fiber humidity sensor based on a tapered fiber coated with agarose gel. Sens. Actuators B Chem. 69, 127–131 (2000)CrossRef
58.
Zurück zum Zitat D. Bykov, O. Schmidt, T. Euser, P.S.J. Russell, Flying particle sensors in hollow-core photonic crystal fibre. Nat. Photonics 9, 461 (2015)CrossRef D. Bykov, O. Schmidt, T. Euser, P.S.J. Russell, Flying particle sensors in hollow-core photonic crystal fibre. Nat. Photonics 9, 461 (2015)CrossRef
59.
Zurück zum Zitat Y. Wang, N. Li, X. Huang, M. Wang, Fiber optic transverse load sensor based on polarization properties of π-phase-shifted fiber Bragg grating. Opt. Commun. 342, 152–156 (2015)CrossRef Y. Wang, N. Li, X. Huang, M. Wang, Fiber optic transverse load sensor based on polarization properties of π-phase-shifted fiber Bragg grating. Opt. Commun. 342, 152–156 (2015)CrossRef
60.
Zurück zum Zitat M.S. Islam, B.K. Paul, K. Ahmed, S. Asaduzzaman, M.I. Islam, S. Chowdhury et al., Liquid-infiltrated photonic crystal fiber for sensing purpose: design and analysis. Alexandria Eng. J. (2017) M.S. Islam, B.K. Paul, K. Ahmed, S. Asaduzzaman, M.I. Islam, S. Chowdhury et al., Liquid-infiltrated photonic crystal fiber for sensing purpose: design and analysis. Alexandria Eng. J. (2017)
61.
Zurück zum Zitat K. Ahmed, M.S. Islam, B.K. Paul, Design and numerical analysis: effect of core and cladding area on hybrid hexagonal microstructure optical fiber in environment pollution sensing applications. Karbala Int. J. Mod. Sci. 3, 29–38 (2017)CrossRef K. Ahmed, M.S. Islam, B.K. Paul, Design and numerical analysis: effect of core and cladding area on hybrid hexagonal microstructure optical fiber in environment pollution sensing applications. Karbala Int. J. Mod. Sci. 3, 29–38 (2017)CrossRef
62.
Zurück zum Zitat W.L. Ng, A.A. Rifat, W.R. Wong, D.C. Tee, F.R. Mahamd Adikan, Enhancement of evanescent field exposure in a photonic crystal fibre with interstitial holes. J. Mod. Opt. 64, 1544–1549 (2017)CrossRef W.L. Ng, A.A. Rifat, W.R. Wong, D.C. Tee, F.R. Mahamd Adikan, Enhancement of evanescent field exposure in a photonic crystal fibre with interstitial holes. J. Mod. Opt. 64, 1544–1549 (2017)CrossRef
63.
Zurück zum Zitat A.A. Rifat, R. Ahmed, G.A. Mahdiraji, F.M. Adikan, highly sensitive d-shaped photonic crystal fiber-based plasmonic biosensor in visible to near-IR. IEEE Sens. J. 17, 2776–2783 (2017)CrossRef A.A. Rifat, R. Ahmed, G.A. Mahdiraji, F.M. Adikan, highly sensitive d-shaped photonic crystal fiber-based plasmonic biosensor in visible to near-IR. IEEE Sens. J. 17, 2776–2783 (2017)CrossRef
64.
Zurück zum Zitat M. De, R.K. Gangwar, V.K. Singh, Designing of highly birefringence, dispersion shifted decagonal photonic crystal fiber with low confinement loss. Photonics Nanostruct. Fundam. Appl. 26, 15–23 (2017)CrossRef M. De, R.K. Gangwar, V.K. Singh, Designing of highly birefringence, dispersion shifted decagonal photonic crystal fiber with low confinement loss. Photonics Nanostruct. Fundam. Appl. 26, 15–23 (2017)CrossRef
65.
Zurück zum Zitat L. Xin, L. Ying, X. Guo, Modular interference characteristics and beat length of a two-hole photonic crystal fiber, in International Symposium on Optoelectronic Technology and Application 2016 (2016), pp. 101550T–101550T-7 L. Xin, L. Ying, X. Guo, Modular interference characteristics and beat length of a two-hole photonic crystal fiber, in International Symposium on Optoelectronic Technology and Application 2016 (2016), pp. 101550T–101550T-7
66.
Zurück zum Zitat M.R. Hasan, M.A. Islam, A.A. Rifat, A single mode porous-core square lattice photonic crystal fiber for THz wave propagation. J. Eur. Opt. Soc. Rapid Publ. 12, 15 (2016)CrossRef M.R. Hasan, M.A. Islam, A.A. Rifat, A single mode porous-core square lattice photonic crystal fiber for THz wave propagation. J. Eur. Opt. Soc. Rapid Publ. 12, 15 (2016)CrossRef
67.
Zurück zum Zitat S.K. Mishra, S. Rani, B.D. Gupta, Surface plasmon resonance based fiber optic hydrogen sulphide gas sensor utilizing nickel oxide doped ITO thin film. Sens. Actuators B Chem. 195, 215–222 (2014)CrossRef S.K. Mishra, S. Rani, B.D. Gupta, Surface plasmon resonance based fiber optic hydrogen sulphide gas sensor utilizing nickel oxide doped ITO thin film. Sens. Actuators B Chem. 195, 215–222 (2014)CrossRef
68.
Zurück zum Zitat S.K. Mishra, S. Bhardwaj, B.D. Gupta, Surface plasmon resonance-based fiber optic sensor for the detection of low concentrations of ammonia gas. IEEE Sens. J. 15, 1235–1239 (2015)CrossRef S.K. Mishra, S. Bhardwaj, B.D. Gupta, Surface plasmon resonance-based fiber optic sensor for the detection of low concentrations of ammonia gas. IEEE Sens. J. 15, 1235–1239 (2015)CrossRef
69.
Zurück zum Zitat S. Asaduzzaman, K. Ahmed, M.F.H. Arif, M. Morshed, Proposal of a simple structure photonic crystal fiber for lower indexed chemical sensing, in 2015 18th International Conference on Computer and Information Technology (ICCIT) (2015), pp. 127–131 S. Asaduzzaman, K. Ahmed, M.F.H. Arif, M. Morshed, Proposal of a simple structure photonic crystal fiber for lower indexed chemical sensing, in 2015 18th International Conference on Computer and Information Technology (ICCIT) (2015), pp. 127–131
70.
Zurück zum Zitat M. Morshed, S. Asaduzzaman, M.F.H. Arif, K. Ahmed, Proposal of simple gas sensor based on micro structure optical fiber in 2015 International Conference on Electrical Engineering and Information Communication Technology (ICEEICT) (2015), pp. 1–5 M. Morshed, S. Asaduzzaman, M.F.H. Arif, K. Ahmed, Proposal of simple gas sensor based on micro structure optical fiber in 2015 International Conference on Electrical Engineering and Information Communication Technology (ICEEICT) (2015), pp. 1–5
71.
Zurück zum Zitat S. Das, V. Jayaraman, SnO 2: a comprehensive review on structures and gas sensors. Prog. Mater Sci. 66, 112–255 (2014)CrossRef S. Das, V. Jayaraman, SnO 2: a comprehensive review on structures and gas sensors. Prog. Mater Sci. 66, 112–255 (2014)CrossRef
72.
Zurück zum Zitat S. Asaduzzaman, K. Ahmed, B.K. Paul, Slotted-core photonic crystal fiber in gas-sensing application, in SPIE/COS Photonics Asia (2016), pp. 100250O–100250O-9 S. Asaduzzaman, K. Ahmed, B.K. Paul, Slotted-core photonic crystal fiber in gas-sensing application, in SPIE/COS Photonics Asia (2016), pp. 100250O–100250O-9
73.
Zurück zum Zitat S. Asaduzzaman, M.F.H. Arif, K. Ahmed, P. Dhar, Highly sensitive simple structure circular photonic crystal fiber based chemical sensor, in 2015 IEEE International WIE Conference on Electrical and Computer Engineering (WIECON-ECE) (2015), pp. 151–154 S. Asaduzzaman, M.F.H. Arif, K. Ahmed, P. Dhar, Highly sensitive simple structure circular photonic crystal fiber based chemical sensor, in 2015 IEEE International WIE Conference on Electrical and Computer Engineering (WIECON-ECE) (2015), pp. 151–154
74.
Zurück zum Zitat S. Asaduzzaman, K. Ahmed, M.F.H. Arif, M. Morshed, Application of microarray-core based modified photonic crystal fiber in chemical sensing, in 2015 International Conference on Electrical & Electronic Engineering (ICEEE) (2015), pp. 41–44 S. Asaduzzaman, K. Ahmed, M.F.H. Arif, M. Morshed, Application of microarray-core based modified photonic crystal fiber in chemical sensing, in 2015 International Conference on Electrical & Electronic Engineering (ICEEE) (2015), pp. 41–44
75.
Zurück zum Zitat J.-P. Berenger, A perfectly matched layer for the absorption of electromagnetic waves. J. Comput. Phys. 114, 185–200 (1994)MathSciNetCrossRef J.-P. Berenger, A perfectly matched layer for the absorption of electromagnetic waves. J. Comput. Phys. 114, 185–200 (1994)MathSciNetCrossRef
76.
Zurück zum Zitat T. Uno, Y. He, S. Adachi, Perfectly matched layer absorbing boundary condition for dispersive medium. IEEE Microwave Guided Wave Lett. 7, 264–266 (1997)CrossRef T. Uno, Y. He, S. Adachi, Perfectly matched layer absorbing boundary condition for dispersive medium. IEEE Microwave Guided Wave Lett. 7, 264–266 (1997)CrossRef
77.
Zurück zum Zitat B.K. Paul, K. Ahmed, S. Asaduzzaman, M.S. Islam, Folded cladding porous shaped photonic crystal fiber with high sensitivity in optical sensing applications: design and analysis. Sens. Bio-Sens. Res. 12, 36–42 (2017)CrossRef B.K. Paul, K. Ahmed, S. Asaduzzaman, M.S. Islam, Folded cladding porous shaped photonic crystal fiber with high sensitivity in optical sensing applications: design and analysis. Sens. Bio-Sens. Res. 12, 36–42 (2017)CrossRef
78.
Zurück zum Zitat K. Ahmed, I. Islam, B.K. Paul, S. Islam, S. Sen, S. Chowdhury et al., Effect of photonic crystal fiber background materials in sensing and communication applications. Mat. Discov. (2017)CrossRef K. Ahmed, I. Islam, B.K. Paul, S. Islam, S. Sen, S. Chowdhury et al., Effect of photonic crystal fiber background materials in sensing and communication applications. Mat. Discov. (2017)CrossRef
79.
Zurück zum Zitat G. Amouzad Mahdiraji, D.M. Chow, S. Sandoghchi, F. Amirkhan, E. Dermosesian, K.S. Yeo et al., Challenges and solutions in fabrication of silica-based photonic crystal fibers: an experimental study. Fiber Integr. Opt. 33, 85–104 (2014)CrossRef G. Amouzad Mahdiraji, D.M. Chow, S. Sandoghchi, F. Amirkhan, E. Dermosesian, K.S. Yeo et al., Challenges and solutions in fabrication of silica-based photonic crystal fibers: an experimental study. Fiber Integr. Opt. 33, 85–104 (2014)CrossRef
80.
Zurück zum Zitat R.T. Bise, D. Trevor, Solgel-derived microstructured fibers: fabrication and characterization, in Optical Fiber Communication Conference (2005), p. OWL6 R.T. Bise, D. Trevor, Solgel-derived microstructured fibers: fabrication and characterization, in Optical Fiber Communication Conference (2005), p. OWL6
81.
Zurück zum Zitat H. El Hamzaoui, Y. Ouerdane, L. Bigot, G. Bouwmans, B. Capoen, A. Boukenter et al., Sol-gel derived ionic copper-doped microstructured optical fiber: a potential selective ultraviolet radiation dosimeter. Opt. Express 20, 29751–29760 (2012)CrossRef H. El Hamzaoui, Y. Ouerdane, L. Bigot, G. Bouwmans, B. Capoen, A. Boukenter et al., Sol-gel derived ionic copper-doped microstructured optical fiber: a potential selective ultraviolet radiation dosimeter. Opt. Express 20, 29751–29760 (2012)CrossRef
82.
Zurück zum Zitat H. Ebendorff-Heidepriem, P. Petropoulos, S. Asimakis, V. Finazzi, R.C. Moore, K. Frampton et al., Bismuth glass holey fibers with high nonlinearity. Opt. Express 12, 5082–5087 (2004)CrossRef H. Ebendorff-Heidepriem, P. Petropoulos, S. Asimakis, V. Finazzi, R.C. Moore, K. Frampton et al., Bismuth glass holey fibers with high nonlinearity. Opt. Express 12, 5082–5087 (2004)CrossRef
83.
Zurück zum Zitat J. Knight, T. Birks, P.S.J. Russell, D. Atkin, All-silica single-mode optical fiber with photonic crystal cladding. Opt. Lett. 21, 1547–1549 (1996)CrossRef J. Knight, T. Birks, P.S.J. Russell, D. Atkin, All-silica single-mode optical fiber with photonic crystal cladding. Opt. Lett. 21, 1547–1549 (1996)CrossRef
Metadaten
Titel
Development of Photonic Crystal Fiber-Based Gas/Chemical Sensors
verfasst von
Ahmmed A. Rifat
Kawsar Ahmed
Sayed Asaduzzaman
Bikash Kumar Paul
Rajib Ahmed
Copyright-Jahr
2019
DOI
https://doi.org/10.1007/978-3-319-76556-3_12

Neuer Inhalt